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Abstract  
Manufacturers of permanent photoresist consider an array of 

functional requirements when developing new materials. Each 

step, from synthesis through formulation and film processing, 

impacts the quality and reliability of the finished product.  

Typically, pattern-cured formulations consist of functionally 

different source materials which are employed to match pre-set 

goals for optical, mechanical, thermal and electrical film 

properties.  However, source materials may contribute ionic and 

other impurities, either resulting from their respective synthesis, or 

generated as processing by-products.  These impurities can pose a 

corrosion risk following migration to susceptible metal surfaces 

with which the film is in contact.   

The goal of this work is to identify and understand corrosion 

risks presented by mobile ion impurities as a function of bulk film 

thermo-mechanical properties.  For permanent films used in inkjet 

applications, key material properties include glass transition 

temperature (Tg), modulus and water permeability. 

Electrochemical Impedance Spectroscopy (EIS) was used along 

with Dynamic Mechanical Analysis (DMA), to characterize 

prototype films. The level of corrosive species present was 

analytically quantified via Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS).  Our data shows that thermo-mechanical 

properties of fully cured permanent film have significant impact on 

preventing corrosion with significant amounts of corrosive species 

present.   

Background 
High aspect ratio photo-patterned permanent thick film 

epoxy, such as MicroChem SU-8, has found, and is continuing to 

find, productive niches in MEMS [1], bioMEMS [2], microfluidics 

[3], advanced displays [4] and other emerging device technology 

applications. The patterned epoxy takes form, either as permanent 

structures in the device, such as display pixel walls, 

micromachined parts, such as watch gears, or as dielectric layers.  

As these emerging technologies transition from first proof of 

concept to large volume production, there is concurrent need for 

higher reliability, more production-worthy epoxy chemistries. 

Material specifications for such epoxy materials were, until 

recently, a problem for MicroChem, as typical epoxy chemistry 

was considered in the class of UV-Curables and not IC compatible, 

either in bulk material property or in performance. This problem is 

gradually being overcome, as Nippon Kayaku, MicroChem’s 

parent company, has become our exclusive supplier of electronic 

grade epoxy.   

In contrast to the transient nature of sacrificial resist films, 

which are typically removed following substrate etching, the 

permanent 3D film property of crosslinked epoxy adds yet more 

levels of material requirement, depending on application. Beyond 

the nominal physical characteristics defining epoxy chemical 

structure, such as molecular weight distribution, epoxy equivalent 

weight (EEW), glass transition temperature (Tg) and modulus, are 

those desirable bulk electrical characteristics of the crosslinked 

epoxy network providing galvanic corrosion resistance and 

dielectric insulation.  For the next generation of epoxy permanent 

films, such electrical properties are needed consistently, 

formulation lot-to-lot, as part of the material supplier deliverable. 

Combining these attributes with the high chemical and thermal 

flow resistance properties of a typical crosslinked epoxy network, 

makes this class of permanent film becomes an even more viable 

choice for MEMS and other microelectronic applications.   

In 2008, MicroChem introduced a first prototype photo-

patterning “corrosion-resistant” material, based on a very low total 

chlorine bisphenol-A epoxy6. Initial successful results in a Highly 

Accelerated Stress Test (HAST, at 85°C/85% RH/ 1 atm, 96-1000 

hr) conditions on Al and Cu surfaces seemed to validate the low 

total chlorine (<50ppm) approach, but use of more rigorous 

Pressure Cooker Test (PCT) reliability conditions (120°C/90-

100% RH, 2 atm, 24-96 hr) resulted in corrosion test failure. In an 

effort to understand the cause(s) for such failure, MicroChem and 

Lexmark International, a leading manufacturer of consumer inkjet 

printers devices, and a first prototype test partner with MicroChem, 

joined forces.   

Initial EIS testing was conducted at Lexmark on a 

MicroChem low chlorine “corrosion-resistant” prototype material 

using a Lexmark-developed epoxy material as an internal standard. 

Samples were tested in both partially and fully cured states in DI 

water.  Tests showed corrosion developed in the partially cured 

sample only. This result strongly implied that other variables, 

beyond low ppm chlorine, were in play.  Identification of these 

variables, the extent to which each variable, and their possible 

interactions, influences the EIS test result, and the implications of 

these findings, is the basis for work presented here.   

Experimental 
In this work, we evaluate two prototype “corrosion-free” 

resists from MicroChem Corp. EPR-06 and EPR-42 and compared 

in reference to a Lexmark control.  EIS samples were prepared by 

spinning coating the various resist films onto a Si wafer coated 

with an AlCu (99.5% Al, 0.5% Cu) metal layer.  In the initial 

round of tests, EPR-06 was tested in both a fully and partially 

cured states.  To achieve a partially cured film, the EPR-06 was 
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processed through expose, post expose bake (PEB), and develop 

processes then the wafer was cleaved in half. One half of the wafer 

was processed through a final hard bake while the second half was 

left in a partially cured state.  EIS testing for round one was 

conducted in DI water at 60°C. 

The second round of EIS testing was designed to examine 

samples across a range of crosslink densities and molecular 

weights.  To achieve a range of properties, a high molecular weight 

resist (EPR-42) with a lower EEW was blended with a lower 

molecular weight resist (EPR-06) with a higher EEW.  EIS testing 

for round two was conducted in a 15ppm chloride solution, also at 

60°C.  This solution was selected because it is representative of the 

chloride levels that might be found in an inkjet system.  The 

prototype and blended resists for round two testing are outline in 

Table 1.  

 

Table 1. Experimental Materials 

Resist Solution Mw Cl X-link ρ ρ ρ ρ 

EPR-06 15ppm Cl Low Low Low 

3:1 blend 15ppm Cl Med Low Low 

1:1 blend 15ppm Cl Med Med Med 

1:3 blend 15ppm Cl Med Med High 

EPR-42 15ppm Cl Med Med Highest 

LXK Control 15ppm Cl High High Med 

Materials 
The prototype EPR-06 features specially treated low total 

chlorine, high EEW (lower crosslink density) bisphenol-A epoxy. 

Prototype EPR-42 employs an experimental, higher total chlorine, 

low EEW epoxidized bisphenol-A novolac. Both incorporate an i-

line sensitive onium salt photoacid generator (PAG), some 

appropriate film additives containing essentially no significant 

mobile halide, and a casting solvent.   The two prototypes and 

three blends resulting from combination of each prototype, as well 

as the respective experimental levels of three representative 

variables in the formulation space, are shown in Table 1. It was 

desirable that the physical properties for both the single component 

prototypes and the three blended resists would provide wide 

enough material variability to effect the EIS response.     

The Lexmark control resist is comprised of three different 

resins.  The first component is a high molecular weight, low EEW 

epoxy resin, the second a high molecular weight, high EEW 

phenoxy, and the third a low molecular weight, low EEW 

naphthalene resin.  The resins are blended with a casting solvent 

and i-line sensitive PAG (onium salt) along with additional 

additives to achieve the desired film performance.  In contrast to 

the MicroChem prototype resins, the resins used in the control 

formulation were not treated or processed to produce ultra-low Cl 

ion levels and so provided an ideal control. 

EIS Testing 
The experimental foundation for this work involves 

Electrochemical Impedance Spectroscopy (EIS).  The EIS flat cells 

were connected to a Princeton Applied Research Model 273A 

potentiostat, a Solartron model 1281B multiplexer and Solartron 

model 1255B frequency analyzer.  The CorrWare and ZPlot v.3.2b 

EIS software and control instrumentation used was from Scribner 

Associates Inc.  In this set of EIS experiments, prototype epoxy-

based photoresists were coated over an AlCu (99.5%Al/0.5%Cu) 

surface then immersed in an electrolyte solution.  A low amplitude 

AC signal was then applied to the EIS test cell (Figure 1) and the 

signal ramped from 60kHz to 0.1Hz in 10 steps per decade. The 

electrical impedance and open circuit potential vs. an Ag/AgCl 

reference electrode of the system was monitored over two weeks. 

The pore resistance, Rpore, which is a measure of the ionic 

conducting path through the epoxy coating and the in-tact coating 

capacitance, Ccoat, were then extracted from the EIS data (Nyquist 

and Bode plots). The presence of a Warburg element, which is 

indicative of a diffusion process, allows the diffusion coefficient 

for chloride through the epoxy coating to be extracted from the 

EIS test data.  A more detailed explanation of EIS test theory can 

be found elsewhere in the literature [6]. 

 

Figure 1. EIS Flat Cell  

 

Thermo-mechanical and Chemical Analysis  
In order to better understand the EIS test performance of the 

prototype materials, the thermo-mechanical and chemical 

properties of each resist were fully characterized.  The Glass 

Transition Temperature (Tg) and crosslink density were evaluated 

by dynamic mechanical analysis using a Q800 Dynamic 

Mechanical Analyzer by TA Instruments.  Fully cured free 

standing films approximately 50um in thickness were ramped from 

-50°C to 300°C with a ramp rate of 3°C/min and frequency of 

10Hz.  

For each prototype resist the molecular weight (Mw) was 

determined by Gel Permeation Chromatography (GPC), and the 

Epoxy Equivalent Weight (EEW) was measured by titration.  

Additionally, the total and extractible level of chloride ions were 

measured by Ion Chromatography (Dionex-600) of bomb 

combusted and water extracted samples respectively.  Lastly, the 

mobile cations were quantified by Inductively Coupled Plasma 

Mass Spectrometry (ICP-MS). 

Results and Discussion 
As mentioned, the impetus for using these two epoxy 

components derived from the need for wide variability of the bulk 

physical properties (Total Chlorine, Mobile Chloride, EEW, etc.) 

in the test space. Further, blending of the two formulated 

components did provide continuous variability in physical 

properties (Table 2) and in EIS response (Table 3). These 

formulation prototypes are not commercially worthy as engineered 

products, as they are not designed for any particular field 

application, but rather are composed for the experimental work 
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presented herein.  That said, the learning shown here will assist in 

development of future generations of photo-patterning epoxy 

products.  

 

Table 2.  Analytical Results Summary 

 

 As expected, the two prototypes and three blends generally 

show a wide, continuous range in Mw, Tg, and EEW.  The EEW 

values reported for EPR-06 and EPR-42 are calculated values 

based on their single epoxy chemistries, while the EEW values for 

the blended samples were measured by titration. Thus there is a 

discontinuity with respect to the EEW for EPR-06.  Crosslink 

density values derived from DMA testing continuously increased 

with increasing proportion of EPR-42. Interestingly, the Lexmark 

standard shows a range of values matching some of the individual 

properties of the prototypes while not matching any one prototype. 

In particular, the crosslink density of the Lexmark control is most 

similar to that of the 1:1 blended prototype, while the molecular 

weight is significantly greater than any of the MicroChem 

prototypes.   

Table 3. EIS Results Summary 

Resist εεεε    ∆∆∆∆ Ccoat, F  Rpore, ΩΩΩΩ D, m
2
/s Corrosion 

DI Water 

-06, 

Cured 
8.68 --  9.6E-23 No 

-06, 

Partial 

cure 

14.8 --  1.1E-20 Yes 

15ppm NaCl Solution 

-06 5.27 2.3E-06 1.0E+05 Na No 

3:1 7.84 1.7E-09 2.3E+08 1.1E-20 Unclear 

1:1 6.04 4.6E-10 9.2E+08 2.6E-22 Yes 

1:3 5.95 4.9E-10 7.4E+08 5.0E-22 Yes 

-42 7.41 6.5E-10 4.4E+09 2.1E-22 Yes 

Control 6.51 5.1E-10 1.2E+09 3.8E-22 No 

 

Consider from Table 2 the first two variables total chlorine 

and mobile chloride.  EPR-06 shows both the lowest total chlorine 

and lowest mobile chloride of the samples tested. The initial 

hypothesis for formulation of prototype EPR-06 postulates low 

total chlorine will decrease the chances for generating additional 

mobile chloride through further conversion of halohydrin 

(consequence of incomplete epoxidation reaction), either in the 

liquid formulation, or in the processed hardened film.  The 

expectation is to not observe any significant EIS response, if both 

total chlorine and mobile chloride are nominally low.  Referring to 

Table 3, the EIS response for totally cured EPR-06, in DI water, 

showed no visual corrosion response, while the partially cured 

sample did. For EPR-06 exposed to a 15ppm NaCl solution, 

conditions similar to the other prototypes and the standard, the 

visual corrosion test was inconclusive, while EPR-42 and standard 

showed no visual corrosion.  These examples illustrate that 

variables other than total chlorine and mobile chloride play a role 

in corrosion resistance. 

 Crosslink density, molecular weight and Tg all show general 

correlation to the EIS measured values for pore resistance (Rpore). 

Figure 2 (Pore Resistance vs. Test Time) shows two distinct 

sample responses occurring over the t=0 to t=2 day time period.  

For the EPR-06 prototype, a precipitous five order of magnitude 

drop in pore resistance is observed after 48 hours; thereafter, the 

sample shows steady behavior for the remainder of the test period.  

Figure 2. EIS Results for Pore Resistance   

The remaining samples, save one, show only a nominal drop-

off (1-2 orders of magnitude) after one day to steady pore 

resistance through the remainder of the test period.  The large 

magnitude drop-off in pore resistance for EPR-06 may be due to 

either of two phenomena: (1) a defect in the epoxy film and/or 

Al/Cu substrate, which caused an unexpected acceleration in 

degradation, or (2) a large uptake of water in the film, which 

caused acceleration of ion mobility, as shown by a loss of pore 

resistance.  The gravimetric measurements taken for fully cured, 

free standing films soaked at 70°C showed the mass uptake in DI 

water ranged from 1.8% - 2.5%.  This suggests that the EPR-06 

test specimen was likely damaged or defective at the start of 

testing. 

The remaining samples show only a modest decline in Rpore 

from T0 throughout the test period indicating a modest uptake of 

water.  But, within the other prototypes and the standard, no clear 

distinctions are seen. However, the measured crosslink density of 

EPR-42 is clearly an outlier relative to the other samples and the 

control. A trend of increased stress was evident in the surface 

cracking observed in the EPR-42 and 1:3 (-06:-42) blended 

samples relative to the other samples, where little or no surface 

cracking was evident. Also of note are the EIS results for EPR-

42’s dielectric constant, Ccoat and Rpore values (Table 3).  These 

values place EPR-42 in the low-to-middle response range, which 

allows for prediction of corrosion.  However, in the case of EPR-

42, the ultra-high crosslink density appears to overwhelm all other 

physical characteristics used as metrics for this corrosion study. 

Indeed, visual inspection of EPR-42 showed no corrosion.  While 

neither the EPR-42 nor Lexmark control samples showed a signal 

for corrosion in EIS testing, visual inspection of the Lexmark 

Resist Tot. Cl, 

ppm 

Mobile 

Cl, ppm 

EEW X-link ρρρρ Mw Tg, C 

-06 12.9 1.85 543 16 4831 120 

3:1 67.2 <LOQ 715 19 5398 162 

1:1 128 4.98 493 50 5557 204 

1:3 198 <LOQ 341 65 5756 260 

-42 228 na 195 423 5887 290 

Control  773 1.15 588 55 8710 168 
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control did show a few areas of minor film delamination which 

may indicate the beginnings of a dielectric double layer forming 

between the film and metal interface. Surprisingly, all three 

blended samples produced metal film pitting and/or epoxy film 

delamination in the EIS tests, though no clear trend was observed 

with respect to physical film properties.  

 

Figure 3. EIS Results for Coating Capacitance  

The coating capacitance, Ccoat, as a function of time, is shown 

in Figure 3.  An initial increase in capacitance is seen over the 

course of the first 24hrs as water is absorbed into the coatings.  

Then, because capacitance is inversely related to thickness, the 

Ccoat values decline to a steady state as the coating increases in 

thickness due to swelling.  Here a trend of increasing capacitance 

with increasing parts EPR-42 is observed for the EPR-42 and the 

1:3 blended (-06:-42) samples.  The EPR-42 shows nearly an order 

of magnitude difference compared to the other blended samples 

and the Lexmark control.  This difference could be explained by 

the high density of EPR-42 surface cracks (high crosslink density) 

contributing to increased surface area for this coating, and a net 

increase in swelling.  Since no corrosion was seen for EPR-42, the 

swelling difference may be limited to the outer most surface. 

Nearly all EIS test cells showed the presence of a Warburg 

diffusion element (evidenced by a 45° line on the EIS Nyquist 

plot) which allowed the coefficient of diffusion to be calculated for 

Cl ions through the thin film coatings.  Diffusion coefficient values 

for the sample resists ranged from 10-20 to 10-22 m2/sec. From 

Fick’s first law, the diffusion coefficient for water in an epoxy 

system is on the order of 10-12m2/sec which is eight to ten orders of 

magnitude faster than the values calculated for the resists tested. 

This is consistent with previously reported values of 10-17-10-18 

m2/sec for Cl ion diffusion through a low crosslink density epoxy 

adhesive [6].  Others have reported Cl ion diffusion to be on the 

approximately 9 orders of magnitude less than that of water as 

measured by DSIMS [7].   

 

Summary/Conclusion 
We have presented evidence that ultra-clean resists for MEMS 

applications can be produced for use in applications requiring 

minimal galvanic corrosion.  Some conclusions follow:  

 

1. EIS provides significant insights into the mechanisms 

governing galvanic corrosion. 

2.  High crosslink density may well play a dominant role in 

producing overwhelming resistance to an electrolyte at the 

epoxy film surface, as well as drastically slowing ion 

diffusion in the EIS stack. 

3. Reducing total chlorine had no impact on EIS results reported 

here. 

4. Mobile chloride is implicated in galvanic corrosion, but its 

effects can be mitigated by control of film properties, 

primarily that of crosslink density. 

5. Factors other than high crosslink density play a lesser, but 

still significant role, in preventing ion migration in epoxy 

films.  

6. Epoxy surface swelling resulting from contact with water may 

be enhanced by high film stress surface cracks, which may 

inhibit, or prevent, water and ion migration, relative to less 

stressed films.  

7. EIS results from this work hint at the roles which chemical 

and film crosslink architecture play in minimizing water and 

ion migration.  

8. Further correlation of EIS to other reliability testing, such as 

HAST and PCT, is necessary.  
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