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Abstract 
Functional surfaces with self-cleaning property are highly 

desirable in many applications in the printing industry.  One of the 

challenges in fluid ink jet systems is ink wetting and drooling onto 

the printhead front face.  The contamination of the printhead front 

face leads to missing drops, wrong-sized drops, mis-directionality, 

and satellite drops resulting in degraded print quality.  In this 

study, we report the creation of textured surfaces on Si wafer by 

photolithography, followed by chemical modification, that leads to 

superoleophobic, directional self-cleaning surfaces. We 

systematically investigate its wetting and adhesion properties with 

water, hexadecane and Xerox solid ink using static and dynamic 

contact angle measurement techniques.  The textured surfaces are 

made of micro grooves which demonstrate interesting anisotropic 

wetting behavior. In the direction parallel to the grooves, low 

surface tension testing liquids show very low sliding angle (i.e. 

directional self-cleaning) which is a key enabler for the self-

cleaning effect and maintenance free printhead.   

Introduction  
Digital color printers and presses are complex 

electromechanical devices that put marks on papers.  Traditional 

approaches to design and optimize these devices have primarily 

been focused on the electrical and mechanical properties.  Print 

surfaces with custom-made surface properties are critical and are 

usually after thoughts.  We believe that designer surfaces with 

controlled wetting or de-wetting properties or adhesion properties 

would be the performance differentiator for future engines.  

Features, such as easy-clean, self-clean in certain components, or 

fusing without any offset would be considered as a breakthrough.   

Over the recent decades, inspired by nature and motivated by 

its amazing self-cleaning effect on Lotus leaves, researchers have 

created superhydrophobic surfaces by various approaches [1, 2]. 

These efforts usually involve the combination of surface roughness 

and surface chemistry.  However, most man-made contaminants 

are organic in nature, to be anti-contaminating against organic 

materials, highly oleophobic rather than hydrophobic surfaces are 

needed.  More specifically surfaces with superoleophobicity are a 

lot more valuable and practical than surfaces that are 

superhydrophobic [3].  Most Xerox imaging materials are organic 

matters with low surface tension and we are interested in studying 

the interactions of superoleophobic surfaces with these materials 

with the aim of improving future print processes and printing 

systems.  

One of the challenges in fluid ink jet systems is ink wetting 

and drooling onto the printhead front face.  The contamination of 

the printhead front face leads to missing drops, wrong-sized drops, 

mis-directionality, and satellite drops resulting in degraded print 

quality.   In some cases, the contaminated printhead can be cleaned 

with a maintenance unit which, however, introduces system 

complexity, cost, and reliability issues.  Printhead with self 

cleaning front face design will eliminate ink contamination.  In this 

work, we fabricated a superoleophobic model surface by 

photolithography and demonstrate its directional self-cleaning 

property.   

Experimental  
A model superoleophobic surface was created by 

photolithography by first spin-coating photoresist SPR700 on a Si 

wafer, followed by exposure of the resist through a mask, and then 

developed, etched, striped off the remaining resist and piranha 

clean the surface.  The resulting textured surfaces then was 

modified by tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane 

(FOTS) via molecular vapor deposition of on a MVD100 reactor 

from Applied Microstructures.  

Contact angle and sliding angle measurements were 

performed on a goniometer model OCA20 from Dataphysics.  The 

drop size of the test liquid is controlled to be ~ 5 µL. The 

advancing/receding contact angles are measured using sessile drop 

method by adding/removing liquid to/from the existing droplet at a 

very small rate (0.15µl/sec). The sliding angles are measured using 

the tilting base unit accessory to the Dataphysics goniometer. After 

dispensing a 10 µL droplet, the stage is tilted about one degree per 

second to a maximum of 90°. The sliding angle was defined as the 

angle where the test liquid droplet starts to move. For imaging 

material, Xerox solid ink pellets of ~1 mm in diameter were heated 

at elevated temperature for both contact and sliding angle 

measurements. The accuracy of these measurements is ±2°. 

Results and Discussion  

Microscopy and Property of the Model Fluorinated 
Textured Surface 

The textured surfaces are made of micro grooves by 
photolithography.   

 

 
Figure 1. SEM micrograph of the textured groove structure on Si wafer created 

by photolithography, inset shows the re-entrant structure created by Bosch 

etching process. 
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Figure 1 shows a SEM micrograph of a textured surface consisting 

of grooves ~ 3 µm in width and ~ 4 µm in height with a pitch 

distance of ~ 6 µm on Si wafer.  The surface was chemically 

modified by a fluorosilane coating (FOTS) using the molecular 

vapor deposition technique.  Figure 1 inset shows the detailed 

wavy structure of the side wall created by the Bosch etching 

process.  The re-entrant structure at the top of the groove structure 

is geometrically critical to achieving surface superoleophobicity [3, 

4]. Figure 2 shows a pillar structure with the same geometrical 

parameters and same surface treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SEM micrograph of the textured pillar structure on Si wafer created 

by photolithography 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Anisotropic wetting on the textured groove structure from parallel 

(left) to orthogonal (right) direction with water, hexadecane (HD) and the Xerox 

solid ink 

The surface property of the textured groove structure was 

studied by contact angle measurements using water, hexadecane 

(HD) and Xerox solid ink as test liquids.  The contact angle data 

for the textured surface are depicted in Figure 3 and compared with 

the surface with pillar structure in Table 1.   

Anisotropic wettings are obtained on this textured groove 
structure (Figure 3). The water contact angles are at 131.3° and 
153.8° when measured from the parallel and the orthogonal 
directions of the groove, respectively. The water contact angle for 
a comparable pillar structure was ~ 156° [4]. For hexadecane 
(HD), contact angles on the groove structure are 113.2° and 161.8° 
from the parallel and the orthogonal directions, respectively. The 
hexadecane contact angle for a comparable pillar structure was ~ 
158° [4]. Similarly, the contact angles for the Xerox solid ink at 
elevated temperature are at 119.7° and 156.3° in the direction of 
parallel and orthogonal to the groove structure, respectively. The 
results indicate that the groove structure is both superoleophobic 
and superhydrophobic in the orthogonal direction. The surface 
properties are identical to the comparable pillar structure. Both 
oleophobicity and hydrophobicity reduce somewhat in the parallel 
direction. 

Table 1. Summary of contact angle and sliding angle data for 

various testing liquids on different surfaces 

Surface Test liquid Static 

CA 

Advancing/ 

Receding CA 

Sliding 

angle 

Water 131.3° 137.5°/122.6° 7.5° 

HD 113.2° 118.9°/99.6° 4.1° 

Grooves 

Parallel 

Solid ink 119.7° - 24.7° 

Water 153.8° 158.5°/119.3° 23.3° 

HD 161.8 164.2°/97.9° 34.4° 

Grooves 

Orthogonal 

Solid ink 156.3° - >90° 

Water 156.2° 161.0°/142.6° 10.1° 

HD 157.9° 165.0°/120.9° 9.8° 

Pillars 

Solid ink 154.9° - 33°- 58° 

Water 107.3° 116.3°/95.6° 14° 

HD 73.3° 74.2°/65.2° 9° 

Smooth 

FOTS 

Solid ink 78.5° - ~15° 

 
When a droplet moves on a surface, the contact line advances 

(or wets) into a fresh surface area and recedes (or de-wets) from a 
wetted surface area over the energy barriers due to defects, such as 
physical roughness and chemical inhomogeneousness. The defects 
and energy barriers give rise to (solid-water-air) contact line 
pinning and contact angle hysteresis which is the contact angle 
difference between the advancing and receding contact angles. 
During advancing, the droplet with a contact angle much larger 
than that on smooth FOTS surface and top of the grooves and 
pillars can easily wets the top of the grooves and pillars. The re-
entrant structure shown in Figure 1 inset effectively locks even the 
low surface tension liquid like hexadecane wetting just the first 
few of waves which minimizes the energy barrier during 
advancing. This applies for all the three textured surfaces, groove 
parallel, groove orthogonal, and pillar structure. The advancing 
angles are tracking closely to their static contact angles. During 
receding, the contact line pinned at the inner edge and outer edge 
of the grooves and pillars. For the droplets moving on pillars and 
perpendicular to the grooves, the discontinuous contact line 
probably also enhances its pinning effect. This contact line pinning 
result in much larger contact angle hysteresis in the pillar textured 
surface and groove textured surface in the orthogonal direction.  

Sliding angles for 10 µL of water and hexadecane droplets 
(7.5° and 4.1°, respectively) are small, even smaller than the pillar 
structure, in the parallel direction. This is despite of the smaller 

Parallel Orthogonal

HDHD

waterwater

Solid ink Solid ink

Parallel Orthogonal

HDHD

waterwater

Solid ink Solid ink
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static contact angles in the parallel direction. The sliding behavior 
depends on the movement of the contact line [5] and how the 
drops move (sliding off or rolling off) toward the sliding direction. 
A continuous short contact line may be preferable for a surface 
where droplets are sliding off; while a discontinuous and irregular 
contact line could be better for a surface where droplets are 
literally rolling off. The sliding angle results are consistent with 
contact angle hysteresis. For instance, in the direction parallel to 
groove, the hysteresis is smaller so does the sliding angle. 

Evidence for the Cassie-Baxter State  
Two states are commonly used to describe the liquid-solid 

interface on rough surfaces:  the Cassie-Baxter state and the 

Wenzel state.  The static contact angles for a droplet at the Cassie-

Baxter state (θCB) and the Wenzel state (θW) are given by equations 

(1) and (2) [6,7], respectively. 

 

1coscos −+= ffR YfCB θθ       (1) 

 

YW r θθ coscos =         (2) 

 

where ƒ is the area fraction of projected wet area, Rƒ is the 

roughness ratio on the wet area and Rƒ f is solid area fraction, r is 

the roughness ratio, and θY is the contact angle of the liquid 

droplet on a flat surface.     

The re-entrant structure shown in Figure 1 inset maintains the 

low surface tension liquids including the molten ink in the Cassie 

state, meaning that the testing liquids “sit” on a composite surface 

consisting of mostly air and a solid with significantly decreased 

contact area.  The re-entrant structure provides a surface 

topography that prevents the low surface tension testing liquids 

entering the Wenzel state (wetting state: liquid fills up the grooves 

on the rough surface and the drop is pinned, characterized by high 

contact angle, high contact angle hysteresis and high sliding angle 

or pinned).  Although contact angles for both states are 

significantly increased for both the Wenzel and Cassie states, the 

Cassie state is desirable due to its low sliding angle and low 

adhesion between the ink and textured surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SEM micrograph of the solidified solid ink-substrate interface 

showing little penetration of the molten ink into the groove valley. 

The liquid-solid interface has been directly studied by putting 

the Xerox molten solid ink on the textured superoleophobic 

surface in a heated chamber and carefully taking off the ink drop 

when it solidifies at room temperature.  The SEM micrograph of 

the interface is given in Figure 4.  The result clearly shows that the 

ink drop does penetrate into the groove, but never touches the 

bottom of the groove.  If the ink is fully penetrated to the bottom 

of the groove, the depth of the solid ink imprint should be ~ 4 µm, 

rather than ~ 1 µm. This observation is consistent with the contact 

and sliding angle measurements.  Specifically the high contact 

angle and low sliding angle suggest that the testing liquid drops are 

in the Cassie-Baxter state and primarily “sits’ on air in the groove 

structure. 

Concluding Remarks  
Superoleophobic groove structure with anisotropic wetting 

behavior has been fabricated on Silicon wafer by 

photolithography, followed by chemical modification. The 

extremely low sliding angle in the parallel direction suggests that 

this groove structured surface may offer directional self cleaning 

property for certain industry applications.  
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