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Abstract 
A piezo inkjet printer was built for the rapid printing of 

hydrogels and other biological materials. Materials printed 
included the synthetic polymers; poly-diallyl-dimethyl ammonium 
chloride and polystyrene sulfonate, and the naturally occurring 
polymers chitosan and alginate. 

Using these polymers, the printer was able to create robust 
hydrogels of size 17mm x 17mm x 2 mm high in under five minutes. 
This speed and size of production is of relevance in enabling tissue 
engineering, regenerative medicine and other technologies. 
Furthermore - live cells were successfully jet by the same printer, 
and could withstand the printing forces and remained viable in 
printed hydrogels for several days after printing. 

Background  
Three dimensional fabrication and printing of bio-materials 

such as hydrogels is a technology advancing on many fronts.  
Hydrogels have applications as matrices for cell growth, drug 
delivery devices and are expected to have a range of other 
applications in tissue engineering, bionics and soft materials 
engineering [1,2,3].  

Calvert [4] has shown the ability to print viable cells using 
thermal inkjet printheads. Nakamura [5] has shown cell viability 
using peizo based inkjet systems. The Derby group has 
numerously shown that human cells can be printed [6]. 

It has been widely demonstrated that artificially fabricated 
biogels can be used to grow cells in-vitro [7]. However the ability 
to produce hydrogel devices of sizes several millimeters to several 
centimeters in three dimensions, is not as numerously reported in 
the literature. Where large (e.g. approaching human organ size) 
objects have been fabricated, it is often by techniques such as 
casting a mould or extrusion of bio materials through a syringe or 
other fine tip [8].    

Inkjet printing is an established method of rapid prototyping. 
Many commercially available inkjet machines produce three 
dimensional objects. Despite differing underlying techniques 
(photo curing, thermal curing, jetting glue into a binder, etc.), they 
are all characterized by a layer by layer approach, considered slow 
in manufacturing terms. One way to help improve efficiency is 
maximizing the material used in the final structure, minimizing the 
material lost in evaporation or other processing waste. For a 
hydrogel, all of the inkjet drop maybe part of the final structure, 
especially if the solids loading in the inks are of the same range as 
that desired for the application, typically 10-50% for robust gels. 

Natural and synthetic ionically charged polymer solutions are 
made to form gels by mixing anionic and cationic ions in a process 
called polyelectrolyte complexation [9]. There is a considerable 
literature on inkjet printing alginate gels for tissue engineering 
where calcium ions are printed into a bath of alginate solution, 
causing local gelation [10,11]. This has limitations as the gels are 

weak and revert to liquid if the calcium level drops.  It would be 
beneficial to have a much wider palette of printable gels.  

Printer for Hydrogels 
A peizo inkjet printer has been constructed based around 

specially engineered Xaar printheads. Proprietary drive electronics 
were used (Xaar XUSB) to independently control up to 16 
printheads at any one time, though typically two, and occasionally 
three or four heads loaded with different materials were used. 
Substrates were held in a clear Perspex plate, designed to hold in 
place 6 slides of 75 x 25 mm.  

Motion between the printheads and the substrate was 
provided by a single linear axis (Reliance), with stroke length 
400mm and 1 micron resolution via a linear encoder (Renishaw). 
In the first prototype of the machine a second horizontal axis was 
not included as the printhead’s 17mm print width (126 nozzles at 
137u spacing) was almost ideal for the types of studies envisioned, 
and they could easily be ganged side by side to increase this width. 
The printhead has an effective throw distance (gap between nozzle 
plate and substrate) of up to 3mm. This meant that three 
dimensional objects up to 2.5mm could be printed with little risk 
of interference and a vertical (Z) axis was not required. Conceptual 
schematic and photograph of the printer are shown in Figures 1 
and 2. 

The intention was to produce gel layers by alternately 
printing two components, a water soluble anionic and cationic 
polymer. Each head had an independent fluid path, without risk of 
cross-contamination in delivery, allowing reaction once the 
polymers were on the substrate.  

The amount of each material delivered per print pass could be 
altered by simple changes to the bitmap patterns. This simple 
technique compensated for changes in fluid concentrations that 
were required to achieve the correct rheological properties 
required for jetting. Elevation of printed structures increased with 
number of print passes. 

 

 
Figure 1. Schematic of the reactive hydrogel printer. 
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Figure 2. Photo of the reactive hydrogel printer. 

Materials for Hydrogels 
Polyelectrolyte complexation: A central idea was the use of 

oppositely charged sets of fluid immersed polymers, which when 
in contact complex to form solids of water soaked gels [10,11]. 
Two main material systems were used. 

One set of materials concerned the synthetic polymers PDDA 
(polydiallyldimethyl ammonium chloride, cationic) and PSS 
(polystyrene sulfonate, anionic). PDDA was received as a liquid at 
35% w/v (Sigma, “very low molecular weight” 150,000 Da) and 
was diluted with Milli-Q water to 20% w/v. PSS (polystyrene 
sulfonate co-maleic acid, sodium salt Sigma, molecular weight 
20,000 Da) was prepared to 30% w/v in Milli-Q. These polymers 
are characterized by short regular polymer chains.  

The other set of materials consisted of the naturally occurring 
polymers alginate and chitosan. Inks were formulated using alginic 
acid sodium salt (Sigma) at 1% w/v in Milli-Q, and low molecular 
weight chitosan (Sigma) at 0.5% w/v in 1% acetic acid. Powders 
were weighed and dissolved in water/acid at 50 oC, stirred at 
500rpm for 2 hours.  

To all materials 1-2% w/v Triton X-405 (polyethylene glycol 
p-(1,1,3,3-tetramethylbutyl)-phenyl ether, Sigma) or Tween-20 
(Polysorbate-20) were added as a surfactant, and 1-2% w/v 
ethylene glycol (EG, Sigma) was added as a humectant. Tween is 
regarded as being more bio-friendly. In concentrations of less than 
5%, these materials were shown to have limited negative effect on 
cell growth (an indicator of bio-compatibility). 

Mammalian cells (C2C12 mouse skeletal myoblasts, ATCC) 
were occasionally incorporated into the gels via a third printhead. 

Substrates included printer paper, photo paper, 
polyvinylidene fluoride (PVDF) membrane and glass microscope 
slides depending on applications. 

 Printing algorithm 
The gels were loaded into the printheads by means of 

standard laboratory syringes (50ml). About 3ml of each polymer 
solution was used in priming the printheads and connecting 
pipework, and 10-15mL of solution remained in each syringe as a 
reservoir. The syringes were laid flat on a laboratory jack, with the 
level of the ink held a few millimeters below the level of the 
nozzle plate. This allowed the correct meniscus to be set at the 
printhead by moving the lab jacks up and down. Occasional visual 

observation of the printheads to see if the nozzles were starved or 
flooding sufficed to maintain correct meniscus.  

There is a saying about three dimensional printing using 
inkjet; that by joining drops we get lines, by joining lines we get 
films, and by layering films we can generate structures. Typically 
bitmap generated squares of 126 x 126 pixels (17mm x 17mm) 
were printed as layers which were then repeated. The bitmap 
image was sent to each of the printheads via the print electronics. 
If the cationic square was printed on the substrate first, the anionic 
material would immediately be jetted, initiating gellation of the 
materials. By altering the density of the bitmaps different polymer 
ratios could be obtained. 

The concept was shown to be broadly successful. There was 
an expected correlation between increased print passes and 
increased gel height (see Fig. 3). 

 

 
Figure 3. Relationship between print passes and dried gel heights. Legend 

indicates ratios of PSS (S) to PDDA (D). 

Excess water removal 
The printer was able to deliver polymer containing inks at 

such a rate that there was often excess water present. Trials with 
the printer showed that the amount of water that was required to be 
delivered with the ink was excessive for the amount of gelling 
material. This was called ‘puddling’ and is shown in Figure 4. 
Ideally the gel could be built up on a table or platen and could then 
be picked up and handled without the need for any additional 
substrate. Glass slides are cheap and conveniently sized, while on 
non-porous, hydrophobic silca glass gels might simply slide or 
peel off. 

Water removal was investigated by a number of methods. 
Printing onto a PVDF membrane on an absorbent filter paper 
showed to be an effective method for soaking away a part of the 
water while leaving the gel to form on the surface. Convection via 
fans and heating pads held below the slides were other effective 
methods of water removal. Interestingly, once gels had been 
formed they were then able to reabsorb approximately 50% more 
water than the excess water. 
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Figure 4. ‘Puddling’of gels printed onto a microscope slide where there was 

excess water for the gelling materials to absorb. 

Cell inclusion 
Cells could be added to the printed hydrogel by either seeding 

them onto the gel post printing or by including them via a third 
printhead. Cells were suspended at 1x106 cells/mL in an ink 
consisting of Dulbecos Modified Eagles Medium (DMEM) with 
10% fetal calf serum and penicillin/streptomycin. In a successful 
trial demonstrating the ability to print all components,  cells were 
printed using one head, the hydrogel gellan gum (CP Kelco, 
dissolved in Milli-Q to 0.33% w/v) printed via a second head, and 
the gellan was crosslinked by jetting dissolved Ca2+ ions via a third 
head. This demonstrated the ability to produce a cell laden 
hydrogel, with all the component parts having been printed. 

 
Figure 5. Printed structures seeded with C2C12 muscle cells.  

Drug and dye diffusion through hydrogels. 
A topic of interest to biologists is the ability to have a 

secondary material release from a network of primary materials at 
a steady, even rate. Also if the release is slow e.g. over the order of 
days of weeks, then this is of special interest for the slow release 
of drugs. 

The charged dyes bromocresol green (C21H13Br4O5SNa 
Sodium Salt, Sigma), crystal violet (C25H30N5Cl, Sigma) and 
indicator dye phenol red (ACS reagent, C17H14O5S, Sigma), were 
added to the polymer ink solutions at less than 0.5% w/v of the 
host ink. 

The bromocreosol green as added to the PDDA ink was 
measured for diffusion by taking micro-graphs at intervals over 
one week. The dye was still slowly releasing after one week (see 
Fig 6). The release was influenced by addition of salts, it was 
found that immersion in buffer solution slowed release, and 
polymer ratios closer to molecular parity also slowed the release. 

 
Figure 6. A gel formed of PDDA and PSS showing a slow release profile..The 

hatching is bromocreosol green dye diffusing over time. Images taken after 

immersion in phosphate buffer salt solution (pH 7.4) for 0.5,1, 2,4, 18 and 168 

hours. 

Gels formed of chitosan dyed with crystal violet and alginate 
dyed with phenol red, showed repeatable, geometric diffusion 
patterns through printed three dimensional squares. The dyes were 
affected by position in the square, ratio of printed material and 
number of washing cycles. 

 
Figure 7. Images of a regular geometric dye diffusion through a printed gel of 

Chitosan and Alginate PDDS. Left to right. ratio Chitosan to Alginate 1:1 

(Crystal Violet dye), ratio Chitosan to Alginate 1:1 (Phenol Red dye),  ratio 

Chitosan to Alginate 1:3 (Crystal Violet dye), and ratio Chitosan to Alginate 

1:3 (Phenol Red dye). 

Three dimensional bio-structures 
The printer was readily able to produce structures that could 

be genuinely called three dimensional, not just films. The printer 
also over came limitations in having to print into pools or wells of 
solution. 

Figure 8 showed a PSS/PDDA gel that has swelled beyond its 
original print size. Figure 9 shows a crosslinked chitosan/alginate, 
printed into a three dimensional lattice structure. 

 

 
Figure 8. A PSS-PDDA gel that has reabsorbed water after being dried. The 

printed and dry gels were originally 17mm square. The gel after 1 day 

immersion in water (A), and after 1 week(B). (Coin diameter is 19mm). 
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Figure 9. A Chitosan-Alginate gel lattice. The walls are about 600micron thick 

at 2.5mm spacing. Bulges in elevation go up to 1mm. 

Discussion 
The development of printing hydrogels is likely to take much 

iteration and there is unlikely to be a fixed set of final materials. 
Inkjet systems are sensitive to even slight changes in ink 
formulation, and the understanding of the rheological properties is 
only just beginning to be understood [12]. The simple syringe 
supply systems together with easily flushed printheads help 
accommodate this sensitivity to the frequently required material 
changes. 

The addition of surfactants and humectants was also 
qualitatively assessed to aid in print reliability (observed factors 
such as time and purge cycles for all nozzles to commence jetting, 
or the time all nozzles could remain jetting before dropping out.) 

The synthetic materials (typically with shorter, more regular 
polymer chains) tended to jet more reliably, almost certainly due 
to simpler rheology in the peizo actuated firing chamber. In 
particular the naturally occurring polymer chitosan was found very 
difficult to jet reliably, even after the use of techniques such as 
sonication.  

In many printing applications such as visual printer 
electronics, where a single wayward or missing inkjet inkjet nozzle 
can be noticed or lead to conductive tracks failing. However for 
many of the applications for hydrogels, the end product may be 
globular, swelling or flesh like. It may have cells growing on it and 
multiplying. In this case a number of faulty jets may be tolerated 
and have little or no effect on the final use of the hydrogel. 

The issue of excess water removal can be addressed in a 
number of ways, with porous membrane substrates one 
demonstrated method. Increasing the solids content could also help 
this. This was as low as 0.5% for some of the natural polymers. 
The reaction kinetics of a multiplicity of drops is also an area for 
further consideration. In the reactive printing undertaken herein, 
the first layer of drops would typically join to form a uniform film 
on the substrate. The subsequent layer of oppositely charged 
polymer would contact the film as individual drops and partial or 
total cross-linking would occur. Thus heterogeneity was apparent 

in many of the films based around the drop spacing. This is 
evidenced in the hatch patterns of Figure 6 or the striped patters of 
Figure 7. 

Conclusion 
Is has been demonstrated that we can build a printer to 

produce hydrogels rapidly, up to 300 microns/min, with a fair 
degree of reliability and repeatability.  

Experiments were undertaken that show practical use of such 
a printer to create devices for controlled drug delivery and as 
matrices for cell growth in a true three dimensional hydrogel 
structure. 

Combined, these aspects of bio-printing contribute to goals 
such as tissue engineering where hydrogels are likely to find use. 
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