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Abstract 
Azo dyes and pigments are typical of the classical pigments 

as characterized by the azo group (-N=N-). However, there are 
still controversial discussions on the azo form whether it exists as 
the azo form in the solid state or in the form of hydrazone structure 
(=N-NH-). We have tackled this problem from the aspects of X-ray 
structure analysis and the chromophoric theory in an attempt to 
construct a model that satisfies these requirements, using methyl 
orange derivative (MOH), Pigment Red 3 (PR3), and Pigment 
Yellow 3 (PY3). Then, we found a protonated azo structure (-
N=N+H-) in these compounds as caused by NH…O “inter”-
molecular hydrogen bonds in MOH, as well as by “intra”-
molecular hydrogen bonds in PR3 and PY3. The present 
protonated azo model is borne out by the crystallographic azo 
bond-length as well as the chromophoric theory. These results lead 
us to conclude that the protonated azo structure is the right form 
in the solid state of hydrogen-bonded azo pigments as described 
above. 

Introduction 
Azo pigments which carry an azo function (-N=N-) are 

widely used in the imaging industry because of their versatile 
colors as well as their low price. Therefore, the azo compounds are 
by far the largest group of colorants with respect to number and 
production volume of currently marketed dyes and pigments. 
However, there are still controversial discussions on the azo form 
whether it exists as the azo form in the solid state or in the form of 
hydrazone structure (=N-NH-). It was Whitaker who pointed out 
the hydrazone structure in some monoazo pigments (whose 
coupling components are β-naphthol, acetoacetanilide, and 
pyrazolone) on the basis of the X-ray structure analysis [1-6]. The 
pigments in question possess NH…O “intra”-molecular hydrogen 
bonds, for example, in PR3 (β-naphthol type; Fig. 1(a)), PY3 
(acetoacetanilide type; Fig. 2(a)), and Pigment Yellow 60 (PY60: 
pyrazolone type; Fig. 3(a)). Whitaker confirmed that the 
previously-assigned hydroxyl H atom in Figs. 1(a), 2(a), or 3(a) is 
attached to the previously-assigned azo-bond to form a hydrazone 
structure (-NH-N=), and this in turn results in the formation of the 
keto form (-C=O) as shown in Figs. 1(b), 2(b), and 3(b). The 
present conclusion is uniquely based on the determination of the H 
position which supports the hydrazone structure. However, in our 
view, it would appear inadequate to diagnose azo or hydrazone 
bonding solely on the basis of the X-ray structure analysis, 
because the structure must also be consistent with the color 
generation based upon the chromophoric theory. For this reason, 
we have tackled the “azo or hydrazone” problem, using methyl 
orange derivative (MOH: Fig. 4), PR3, and PY3, from the 
standpoints of both X-ray structure analysis and the chromophoric 
theory in an attempt to construct a better model that meets the 
above requirements. We see the following two crucial issues on 
the proposed hydrazone-form. One is the assignment of the N-N 

single bond to the proposed hydrazone form and the other is the 
disturbance of the bond alternation (absolutely necessary for the 
color generation) due to the hydrazone bonding. The reported N-N 
bond-lengths are in the range of 1.31-1.33 Å (Figs. 1(b), 2(b), and 
3(b)). The present bond length is abnormally too short for the 
standard single N-N bond of 1.44 Å and is much nearer to the 
standard N=N bond (1.24 Å) [7]. Furthermore, in the hydrazone 
form, the bond alternation is blocked by the existence of the N-N 
single bond (Figs. 1(b), 2(b), and 3(b)). This disturbs the π-
conjugation system of the chromophore, resulting in discoloration. 
However, their characteristic vivid red or yellow color appears 
actually in the solid state. 

In the present investigation, we have re-determined the 
structure of MOH, PR3 and PY3 and, on this basis, propose a 
protonated azo-structure in the form of –N=N+H- which is fully 
consistent with the crystallographic azo bond-length and the 
chromophoric theory. 

 

   
Figure 1. Molecular structure for PR3: (a) azo form and (b) hydrazone form. 

      
Figure 2. Molecular structure for PY3: (a) azo form and (b) hydrazone form. 

         
Figure 3. Molecular structure for PY60: (a) azo form and (b) hydrazone form. 
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Motivation for the proposal of the protonated 
azo-structure (-N=N+H-) 

Our motivation for the proposal of the protonated azo-
structure (–N=N+H-) originates in the re-investigation of the MOH 
structure (Fig. 4). As is well known, the color of azo compounds 
arises from a push-pull system composed of a chromophore (i.e. 
conjugated π-electron system) with auxochromes [8]. In MOH (Fig. 
4), for example, the “phenyl/azo/phenyl” moiety serves as the 
chromophore, and the dimethyl amino group [-N(CH3)2 (donor: 
push)] and the sulfo group [-SO3H (acceptor: pull)] are the 
auxochromes. Then, the electron of the N lone pair (donor: push) 
can be transferred in consistent with the bond alternation through 
the chromophore to the acceptor (-SO3H: pull), resulting in the 
formation of =N+(CH3)2 (now acceptor) and =SO2

-OH (now donor). 
Then, the back electron-transfer also occurs from the new donor to 
the new acceptor, leading to the full electron delocalization in the 
chromophoric system. In this way, the color appears in the visible 
region. Likewise, in PR3, the “naphthol/azo/phenyl” moiety serves 
as the chromophore, while the hydroxyl group [-OH (donor: push)] 
and the nitro group [-NO2 (acceptor: pull)] are the auxochromes.  

In the course of our study on the structure of methyl orange 
and its derivative MOH [9], we came across a structure paper of 
MOH (i.e. vivid red) by Burke et al. [10], reporting that the H 
atom of the sulfo group is transferred from one MOH to the 
neighboring one, forming an “inter”-molecular O3…H1N-N1 
hydrogen bond based on the hydrazone structure (=N2-NH1N-C4), 
as shown in Fig. 5. As stated above, the hydrazone structure 
disturbs the bond alternation in the chromophore and is thus 
supposed to quench the red color. However, the crystal exhibits 
vivid red in reality. This prompted us to believe that the bond 
alternation is still in operation. In addition, we scrutinized the S/O 
bond length in the sulfo group. The three S/O bonds are nearly 
equal in length and lie in the range 1.45-1.47 Å. This shows that 
the negative charge is delocalized in the sulfo group in the form of 
SO3

-, while the proton (H+) is transferred to the azo group of the 
neighboring molecule to form a protonated azo form (i.e. -N=N+H-
: -N2=N+H1N-C4). This forms a zwitterionic structure as shown in 
Fig. 6: -N=N+H- and -SO3

-. The N/N bond length as obtained by 
the X-ray structure analysis is 1.307(3) Å and supports the azo 
bond (standard N=N bond: 1.24 Å) rather than the N-N bond 
(standard N-N: 1.44 Å). The above protonated azo model is fully 
compatible with the crystallographic azo bond-length and the 
chromophoric theory. 

Furthermore, our semi-empirical molecular orbital 
calculations (see below) also support the formation of the above 
zwitterionic structure. Calculations were carried out for the azo 
and zwitterionic structures (Table 1). The N=N bond of 1.23 Å for 
the azo structure is slightly shorter than that of the zwitterionic 
structure (1.25 Å). On the other hand, some striking differences are 
found in the dipole moment and absorption maximum (λ). The 
increase in the dipole moment from 8.4 to 33.2 D bears out clearly 
the formation of the zwitterionic structure. In addition, the 
absorption maximum is displaced from 356.3 to 523.7 nm. This is 
caused by the increased internal electric field due to the enhanced 
dipole moment of the zwitterionic structure that facilitates the 
electron transfer from donor to acceptor. The present longer-
wavelength-band (523.7 nm) of the zwitterionic structure reflects 
well the vivid red color of MOH. 

As described above, the protonated azo structure (i.e. 
formation of the zwitterionic structure) is attributed to the proton 
transfer through NH…O “inter”-molecular hydrogen bonds from 
the sulfo group of one molecule to the azo bond of the neighboring 
one. The similar proton-transfer is also expected to take place 
within a molecule through “intra”-molecular hydrogen bonds in 
PR3, PY3, and other hydrogen bonded azo pigments [1-6, 11, 12]. 
On this account, we firmly believed that we can interpret the “azo 
or hydrazone” problem in PR3, PY3, and other hydrogen bonded 
azo pigments on the basis of the protonated azo-structure. 

 

 
Figure 4. Molecular structure for MOH. 

 
Figure 5. ORTEP plot of MOH. 

 
Figure 6. Proposed zwitterionic-structure for MOH: -N=N+H- and –SO3

-. 

Table 1: MO calculations for MOH 

 

Experimental 
Crystal growth of PR3 and PY3 

PR3 and PY3 were obtained from Kishi-Kasei Co. Ltd. and 
Clariant Ltd., respectively. Both single crystals of PR3 and PY3 
were grown from the vapor phase, using Ar as the carrier gas. 
After 24 h, a number of single crystals were obtained in the form 
of platelets in both samples. 
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X-ray structure analysis on PR3 and PY3 
Reflection data were collected at -180 °C on an R-AXIS 

RAPID-F diffractometer from Rigaku using CuKα as the radiation 
source (λ = 1.5418 Å). The structure was solved by direct methods 
(SIR2004) and refinement was carried out by the full-matrix least-
squares method of F2 (SHELXL97) [13, 14]. 
Molecular orbital calculations on MOH and PR3 

Semi-empirical molecular orbital (MO) calculations were 
carried out using a QUANTUM CACHE ver. 3.2 program package 
which includes MOPAC ver. 94.10 and the ZINDO programs. 
Geometry was optimized for the vivid-red phase of MOH and 
PR3, using the AM1 Hamiltonian. Optical absorption bands were 
calculated with ZINDO program for the optimized geometry. 
DFT calculations on PY3 

Density-functional theory (DFT) calculations were carried out 
using the GAUSSIAN 03 suite of programs [15]. Geometry was 
optimized for PY3, using the density-functional method with the 
B3LYP hybrid functional together with 6-31+G(d) basis set [16, 
17]. Optical absorption bands were calculated with the time-
dependent density-functional theory (TD-DFT) using the 6-
31+G(d) basis set for the optimized geometry. 

Results and Discussion 
Protonated azo-structure in PR3 and related β-
naphthol-type azo pigments 

Fig. 7 shows the ORTEP plot of PR3 (β-naphthol type). The 
structure re-determined is basically in good agreement with that of 
Whitaker, except for the interpretation of the azo or hydrazone 
structure. We also found on the Fourier map the H atom of the 
hydroxyl group (-OH) attached to the azo bond (-N=N-), forming a 
bifurcated N2-H2N

…O1 and N2-H2N
…O2 “intra”-molecular 

hydrogen bond. 
The N1-N2 bond-length of 1.326(2) Å is too short for the 

standard N-N bond of 1.44 Å and is much nearer to the typical azo 
bond (N=N: 1.24 Å [7]). In addition, the N=N bond of the order of 
1.30-1.32 Å is frequently observed in metal-azo complexes [18-
23]. As described previously, the hydrazone structure (=N-NH-) 
obviously interrupts the bond alternation (i.e. conjugated system 
based on the repetition of the “double/single” bond), leading to the 
discoloration. This contradicts the vivid red color of PR3 in the 
solid state. Furthermore, the C1-O1 bond length of 1.255(3) Å is 
longer than the typical C=O double bond of 1.21 Å [7]. Judging 
from the above results, the protonated azo-structure as shown in 
Fig. 9(a) can better explain both the crystallographic N/N bond-
length as well as the color generation mechanism without 
contradiction, rather than the hydrazone structure. 

Table 2 lists the results of molecular orbital calculations, 
showing the N=N bond lengths, absorption bands, and dipole 
moments for the azo structure (Fig. 1(a)) as well as for the 
zwitterionic structure (Fig. 9(a)). Here again, the zwitterionic 
structure yields a larger dipole moment than that of the azo 
structure, supporting that PR3 forms the zwitterionic structure. The 
spectroscopic calculation is also consistent with experiment.  

The same discussion as described above can also be applied 
to other β-naphthol type azo pigments such as Pigment Red 1 
(PR1), PR2, PR6, PR208 etc. where proton transfer occurs from 
the hydroxyl group (-OH) to the azo group (-N=N-) through 
“intra”-molecular hydrogen bonds [1, 11]. 

Protonated azo-structure in PY3 and related 
acetoacetanilide-type azo pigments 

Fig. 8 shows the ORTEP plot of PY3 (acetoacetanilide type). 
Here again, the structure re-determined by us is basically in good 
agreement with that of Whitaker. We also confirmed that the H 
atom of the hydroxyl group (-OH) is attached to the azo bond (-
N=N-), forming a bifurcated N1-H1N

…O1 and N1-H1N
…O3 “intra”-

molecular hydrogen bonds. 
In PY3, the N1-N2 bond length is 1.327(4) Å and the C10-O1 

bond length is 1.244(4) Å. The situation is exactly the same as in 
the case of PR3. DFT calculations also reveal that the N=N bond 
length is 1.318 Å, the absorption maximum 475.5 nm, and the 
dipole moment 3.93 D. These are again compatible with the 
protonated azo-structure (Fig. 9(b)). 

The same discussion as described above can also be applied 
to other acetoacetanilide type azo pigments such as Pigment 
Yellow 1 (PY1), PY4, PY5, PY6, PY12, PY65, PY74, PY98, etc., 
where proton transfer occurs from hydroxyl group (-OH) to the 
azo group (-N=N-) through “intra”-molecular hydrogen bonds [2, 
12]. 

 
Figure 7. ORTEP plot of PR3. 

Table 2: MO calculations for PR3 

 

 
Figure 8. ORTEP plot of PY3. 
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Figure 9. Proposed zwitterionic-structure for (a) PR3 and (b) PY3: -N=N+H- 
and -O-. 

Pyrazolone-based azo pigments (for example: 
Pigment Yellow 10 and 60) 

As stated in Introduction, Whitaker suggested the hydrazone 
structure in azo compounds of the three classes: β-naphthol, 
acetoacetanilide, and pyrazolone types, in which the H atom is 
transferred from the hydroxyl group (-OH) to the azo group (-
N=N-) via “intra”-molecular hydrogen bonds. Among these, we 
could discuss as described above the azo or hydrazone problem in 
azo pigments of PR3 (β-naphthol type), and PY3 (acetoacetanilide 
type), since PR3 and PY3 are still commercially available. 
However, no commercial products of pyrazolone types, for 
example, PY10 and PY60, are on the market. For this reason, we 
could not include them in the present investigation. However, we 
believe that the protonated azo-structure (–N=N+H-) is also 
operative in azo pigments of pyrazolone types (for example, in 
PY60, the N-N and C=O bonds reported are 1.318(3) and 1.230(3) 
Å, respectively). The resulting zwitterionic structure is crucial for 
the color generation, quite irrespective of the fashion of proton 
transfer whether it is supplied through “inter”-molecular or 
“intra”-molecular hydrogen bonds. 

Conclusions 
We have investigated the azo or hydrazone structure in the 

solid state of hydrogen bonded azo pigments from the 
crystallographic and chromophoric points of view, with major 
focus on the proton transfer. The conclusions can be summarized 
as follows. 
1. We have pointed out two major problems in the hydrazone 

structure proposed by Whitaker. The first point is that the N-
N bond-length of 1.31-1.33 Å is too short to assign them to 
the N-N bond. The second point is that the hydrazone 
structure disrupts the electron conjugation in the chromophore 
that is absolutely necessary for the color generation. 

2. We proposed a novel “protonated azo-structure” scheme (-
N=N+H-) that is fully compatible with both the 
crystallographic parameters and the chromophoric theory. 

3. The proton in the protonated azo-structure can be transferred 
through “inter”-molecular or “intra”-molecular hydrogen 
bonds. 
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