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Abstract 
This paper presents systematic studies of the C1s signal in the 

X-ray photoelectron spectra of commercial Cu-phthalocyanine 

(CuPc) commonly used as a major commercial cyan pigment in a 

variety of printing applications. Although the CuPc pigment has 

been widely employed for many decades, the correct interpretation 

of the C1s signal in non-stoichiometric CuPc pigments has not yet 

been agreed upon. Our work demonstrates that the composite C1s 

CuPc signal consists of five components: two related to principal 

C positions within the CuPc macrocycle, two associated with 

shake-up transitions accompanying the principal C positions, and 

one due to mostly aliphatic impurities. A detailed analysis showed 

that magnitude of shake-up peaks was approximately equal 10% to 

12% of their principal transitions, in agreement with theoretical 

calculations, while the impurities C1s signal corresponded to IR 

measurement of the aliphatic C-H vibrations. The proposed C1s 

interpretation has been successfully tested for a large number of 

commercial CuPc pigments and provides a guideline for routine 

XPS analysis of the CuPc that can provide a reliable pigment 

quality control. 

Introduction  
Copper phthalocyanine (CuPc) molecule form a planar 

structure consisting of a porphyrin-like ring surrounded by four 

peripheral benzene rings and a central Cu atom [1,2]. Though a 

number of potential applications of the CuPc in electronic devices 

have been proposed in the recent years [1,3,4], CuPc is primarily 

used as a major cyan pigment in variety of applications ranging 

from printing on a paper to fabric dyeing [2]. Thin film CuPc used 

for electronic applications is usually deposited by thermal 

evaporation, occasionally doped with atoms providing the desired 

electrical conductivity, and the ratio of its constituents is close to 

the CuPc stoichometric ratio. Mass-produced commercial CuPc 

cyan pigment used for printing frequently contains various 

'contaminants', mostly organic additives providing desired ink 

properties. Concentration of the additives can be as high as several 

percent and the resulting mixture does not constitute stoichometric 

CuPc [2].  

Photoelectron spectroscopy of the core CuPc electronic states 

employing the X-ray excitation (XPS: X-ray Photoelectron 

Spectroscopy) has been extensively used to characterize thin 

stoichiometric CuPc films [1,5,6]. However, only recently a 

consensus has been reached regarding the correct interpretation of 

the chemical shifts observed in the C1s composite XPS signal 

[5,6]. Although XPS can be also used to characterize pigment 

CuPc, there is no reported data demonstrating interpretation of the 

XPS spectrum of a nonstoichometric CuP pigment. This report 

presents a systematic XPS investigation of a series of commercial 

CuPc pigment samples and, in particular, the way of resolving the 

C1s signal into its constituents with the help of the corresponding 

IR absorption data. 

Experimental 
An extended series of commercial CuPc pigments were 

analyzed. They were obtained from different vendors in form of 

solid powders with average particle size of few hundred nm. For 

comparison, reference "raw" CuPc, acquired as a "chemical" 

(Sigma-Aldrich) rather than "pigment", was also analyzed. Highly 

conductive Si (100) was used as a substrate on which CuPc 

pigment samples were deposited. The Si substrates were cleaned 

following the normal IC cleaning process that included striping of 

the native oxide [7]. XPS specimens were prepared by depositing 

droplets of aqueous dispersion of a pigment and then allowing the 

water to dry out leaving behind a solid residual film. Alternatively, 

dry powder was pressed against a sticky, conductive tape mounted 

on the Si substrate until it formed a thick, continuous layer of 

powder. Identical XPS spectra were obtained for specimens of the 

same pigment prepared by both methods.  

XPS measurements were conducted using a commercial XPS 

spectrometer equipped with a monochromated Al KαX-ray source 

(1486.6 eV) and the energy scale calibration was done using the 

adventitious C 1s signal (284.8 eV) due to residual hydrocarbons. 

The positions of the individual XPS peaks, their widths and 

amplitudes were determined by means of a non-linear least-square 

fitting of the experimental data with mixed Lorentzian-Gaussian 

functions (15:85 ratio)) and after the subtraction of the Shirley-

type background. The quality of the fitting process was tested by 

simultaneously conducting the Pearson's χ2 test; fitting was 

repeated until satisfactorily low value of the χ2 was achieved. IR 

absorption was measured using a commercial research-grade FTIR 

spectrometer. IR spectra were obtained using pressed tablets 

containing CuPc pigment and optically neutral KBr providing 

transmittance between 10% and 90% throughout the entire 

measured IR spectrum.  

Results and Discussion 
According to recent reports [4-6] C1s spectrum of a high 

purity CuPc consists of two peaks corresponding to different 

carbon bonding configuration within the CuPc molecule, namely 

the carbon within a benzene ring (C1) and carbon in a pyrrole ring 

(C2). In addition, these peaks are accompanied by their shake-up 

satellite due to π - π* transitions (SC1 and SC2). Their binding 

energies vary among the reports, but their respective values are 

approximately equal to 284.7 eV (C1), 286.1 eV (C2), 286.5 eV 

(SC1), and 288.1 eV (SC2). Deconvoluted C1s component peaks 

need to satisfy the following conditions: 1.) since the number of 

carbon atoms of benzene rings is three times more than the number 
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of carbon atoms in pyrrole configuration within a CuPc molecule, 

the ratio of the XPS peak areas (C1+SC1) / (C2+SC2) should also 

be equal 3; 2.) the satellite peak area should be approximately 

equal 10% to 14% of the corresponding main peak area, in 

agreement with the calculated transition probabilities [6,8]. Both 

these conditions are satisfied by the high quality XPS results 

obtained for the thin film, vacuum evaporated CuPc. 

Table 1. Atomic composition of measured CuPc samples (XPS) 
a)
. 

# C N Cu O 
Other 

impurities b) 
C:N:Cu c) 

1 76.8 15.8 3.2 3.6 0.6 24:4.9:1 

2 76.4 16.7 3.0 3.3 0.6 25:5.6:1 

3 76.0 15.7 3.1 4.5 0.7 24.5:5.1:1 

4 76.8 18.0 3.3 1.7 0.2 23.3:5.5:1 

5 75.2 4.3 0.4 13.7 6.4 188:10:8:1 

6 75.3 17.0 3.5 3.6 0.6 21.5:4.9:1 

7 76.5 17.8 3.5 2.1 0.1 21.9:5.1:1 

8 69.3 13.1 2.2 11.5 3.9 31.5:6:1 

9 78.7 15.1 2.4 3.4 0.4 32.8:6.3:1 

10
d)

 74.4 18.4 4.0 2.8 0.4 18.6:4.6:1 
a)

 atomic concentration as measured by XPS - presence of hydrogen is 

neglected; 
b)

 residual impurities found in some of the samples may include: S, 

Cl, Na and Si (originating from substrate); 
c)
 stoichiometric CuPc ratio = 32:8:1; 

d)
 reference sample (not pigment). 

 

 

 

 

 

 

 

 

Figure 1. C1s XPS spectra of CuPc samples - for clarity only few selected 

samples are shown.   

Table 1 presents the elemental composition of the measured 

pigments, while the corresponding C1s spectra of several selected 

pigments are shown in Figure 1. It is apparent that these spectra 

cannot be obtained by simply superposing the component peaks 

with the same set of binding energies for each pigment. For 

example, Figure 2 shows the best outcome of the fitting process 

(minimum χ2 obtained) for a selected pigment using the 

aforementioned binding energies of a high purity CuPc. The result 

is a very poor fit; its χ2 value is larger than 10. Similar results are 

obtained for other pigments. It is also apparent then even if a 

reasonable approximation of the XPS spectra for all pigments was 

obtained using the same set of binding energies for all pigments; 

the peak area ratios would not remain constant as in the case of 

thin, thermally deposited CuPc films.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The best four-peak fit obtained for sample 8 using the reported C1, 

C2, SC1, and SC2 values. FWHM were forced to remain below 1.5. The χ
2
 

value in this case was equal 19.5. Resultant C1/C2 was less than one and the 

difference (dotted line) between the experiment and fit showed unacceptably 

large variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. IR spectra of CuPc samples: A) carbon-hydrogen vibration range and 

B) carbon-oxygen vibration range. For clarity only few selected samples are 

shown. A) Aromatic signal is constant for all samples (benzene rings within a 

CuPc molecule) while aliphatic signal varies among the samples (additives, 

impurities). B) Arrows mark absorption associated with the CuPc molecules. 
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A lack of agreement between the experimental data and the 

theoretical fit using the binding energies obtained from the thin 

film measurements is due to presence of carbon containing 

additives. The presence of the additives is further confirmed by the 

FTIR measurements. Figure 3A shows the IR spectral range of the 

aromatic and aliphatic C-H stretching vibrations. While the 

aromatic C-H signal, resulting mostly from the peripheral CuPc 

benzene rings, remains the same for all the measured pigments, the 

aliphatic C-H component varies among the measured pigments 

indicating presences of additives containing various amounts of 

aliphatic carbon chains. Similarly a difference among the spectra 

of different pigments can be seen in the region where carbon-

oxygen absorption is present (Figure 3B) showing that additives 

may consist of species containing different amounts of hydroxyl 

and carboxyl groups [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A) Correlation between the non-CuPc carbon (as measured by XPS) 

and C-H aliphatic and aromatic absorption (FTIR). Majority of non-CuPc carbon 

forms aliphatic C-H bonds. B) Correlation between the non-CuPc carbon (as 

measured by XPS) and carbon-oxygen IR absorption band between 1600 cm
-1

 

and 1800 cm-1. Large portion of non-CuPc carbon forms moieties containing 

carbon-oxygen bonds. 

Based on this observation, an additional component with 

binding energy of 285.6 eV was added to the XPS fitting routine 

and the fitting process was iterated into the satisfactory agreement 

was obtained for measured samples. The resulting binding energy 

values for all samples are as follows: C1 = 284.81 eV, C2 = 286.16 

eV, SC1 = 286.61 eV, SC2 = 288.17 eV, and the non-CuPc carbon 

= 285.64 eV. Area under the 285.64 eV peak was then used to 

quantify the amount of non-CuPc carbon present in the samples. 

Table 2 summarizes the results demonstrating excellent fit and 

consistency throughout all the measured CuPc pigment samples.  

Comparison of the non-CuPc C1s calculation with the FTIR 

results shows an excellent agreement with the intensity of the 

aliphatic C-H vibrations (Figure 4A) and a relatively good 

correlation with the absoprtion related to carbon-oxygen bond 

vibration (Figure 4B). It is worth noticing that the best fit of the 

experimental XPS results requires that the width of the non-CuPc 

signal (FWHM) is larger than the corresponding values of the 

CuPc components (Table 2). It implies that the non-CuPc XPS 

peak is in fact a superposition of many peaks representing different 

carbon molecular configurations present within the pigment 

additives. This observation is further supported by the complex 

nature of the O1s XPS signal observed in the pigments (Figure 5) 

suggesting presence of a variety of molecular configurations 

containing carbon-oxygen bonds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. O1s XPS spectra of CuPc - for clarity only few selected samples are 

shown. 

Conclusions 
A large number of the commercial CuPc pigments ( over 15, 

different vendors) were analyzed. Detailed analysis of the XPS C1s 

signal provided very accurate measurement of the binding energies 

of carbon residing in benzene and pyrrole configurations within 

the CuPc molecule. In addition, the binding energies of the 

respective shake-up states were determined. The concentration of 

the carbon residing in pigment additives (non-CuPc carbon) was 

quantified and the result agreed with the relative carbon 

concentration measurement provided by the FTIR analysis. It was 

found, that for the majority of CuPc commercial pigments, this 

extraneous carbon was due to impurities containing aliphatic 

hydrocarbons. This work provides methodology for routine 

analysis of the CuPc pigments with the help of X-ray 

photoelectron spectroscopy. 
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Table.2. Results of the five-peak fitting. 

sample 1 2 3 4 5 6 7 8 9 10 

Non-CuPc C (% of total C) 6.4 11.4 9.6 12.7 51 3.0 1.8 5.2 10.4 4.1 

χ
2
 1.44 1.21 1.20 1.12 1.56 1.63 2.10 1.75 1.26 1.40 

284.81 eV 0.96 1.01 0.98 0.97 1.01 1.00 0.98 0.97 0.96 1.01 

286.16 eV 1.02 1.04 1.02 1. 03 1.02 1.01 1.03 0.99 1.00 1.01 

286.61 eV 1.17 1.19 1.14 1.17 1.18 1.18 1.16 1.18 1.16 1.17 

288.17 eV 0.94 0.97 0.91 0.95 0.94 0.95 0.97 0.95 0.91 0.90 

FWHM 

285.64 eV 1.35 1.44 1.42 1.41 1.88 1.43 1.47 1.48 1.42 1.37 

(C1+SC1) / (C2+SC2) 3.01 2.99 3.00 3.02 - 
a)

 3.00 3.00 3.02 3.01 3.01 

SC1 / C1 0.12 0.14 0.12 0.13 - 
a)

 0.12 0.13 0.12 0.16 0.13 

SC2/C2 0.15 0.15 0.15 0.14 - 
a)

 0.14 0.18 0.12 0.16 0.21 
a)

 this value could not be accurately determined due to high non-CuPc carbon concentration.  
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