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Abstract 
Realizing bright and vivid full colour performance in 

electrophoretic displays presents a significant challenge to display 
architects and material designers. A range of dyed polymeric 
microparticles with tunable size, charge and colour have been 
developed. When formulated as colloidal dispersions in low 
dielectric constant media, the particles are electrophoretically 
active and are suitable for use in full colour or monochrome 
electrophoretic displays.  

1. Introduction 
The field of e-paper / flexible display / digital signage 

represents a significant growth opportunity for all parts of the 
display manufacturing value chain and electrophoretic displays are 
a viable candidate, due to their low power consumption, paper-like 
appearance and daylight readability. Current electrophoretic 
displays (EPDs) are based on e-ink Visplex®1,2,3 or Sipix 
Microcup®4,5,6,7 films. It is recognized that although their 
performance is suitable for monochrome application, some 
limitations may arise for bright and vivid full colour performance, 
due to the necessity of additive colour display architectures and the 
use of colour filter arrays, overlaid onto the electrophoretic film. 
One approach to increase the colour and brightness of a full colour 
EPD is to eliminate the use of colour filters and to utilize coloured 
particles in the pixel using the subtractive colour principle. Several 
groups are active in the field of materials and devices for full 
colour electrophoretic displays8,9,10,11,12,13,14. This paper describes a 
new class of dyed polymeric microparticles and their stable 
colloidal dispersions in low dielectric media, which exhibit 
electrophoretic activity. In a similar manner to the offering of 
“ready to use” liquid crystal mixtures; custom designed 
electrophoretic display fluids offer increased freedom in the design 
of advanced pixel architectures for colour-filter-free 
electrophoretic displays to potential manufacturers, with increased 
colour performance. 

By use of a common approach to particle design, the colour, 
particle size, charge and surface functionality can be altered and 
optimized. By use of suitable dyes, it is possible to realize red, 
green and blue particles for additive colour pixel architectures or 
cyan, magenta, yellow and black particles for subtractive colour 
pixel architectures  

The degree of optical scattering can be tuned by modification 
of the difference in refractive index between particle and fluid 

phase or by particle size modification. The colloidal stability can 
be tuned by density matching the particle relative to the fluid 
phase. Fluid parameter tunability can also be advantageous in the 
design of high performance pixel architectures. 

This paper will describe colour data for a range of fluids and 
electro-optical switching data for both single and dual component 
fluids in both vertical and in-plane switching configurations.  

2. Experimental 
The generic polymeric microparticle structure is shown in 

Figure 1. Dye, charge (of either sign) and steric stabilizing surface 
modification can be built into the particle by controlling the 
synthetic conditions. It is also possible to vary the particle size 
from 100–2000nm for any given particle type, whilst retaining a 
narrow size distribution. Dynamic light scattering (DLS, non-
invasive backscattering technique (NIBS), angle of measurement = 
173°) and scanning electron microscopy were used to determine 
particle size and polydispersity. Electrophoretic mobility and zeta 
potential were determined using either a Malvern Zetasizer nano 
ZSTM instrument (diluted sample, angle of measurement = 13°) or 
by direct measurement in a suitable test cell. Colour of particles as 
formulated fluids was measured on an x-rite colour i5 
spectrophotometer in 50�m gap cells, using  double pass 
transmission with a white reflective backstop. Electro-optical data 
(EOC) for EPD fluids in simple test cells were measured using an 
Autronics DMS-30115. 
 

 
 
Figure 1. Generic dyed polymer microparticle structure
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3. Results and Discussion 

3.1 Particle Size & Polydispersity 
Table 1 below shows size and polydispersity data for typical 

red, green, blue, cyan, magenta and yellow particles. A range of 
different sized particles is shown to demonstrate the versatility of 
the particle design approach. 

Table 1. Polymer Microparticle Size and Polydispersity Data 

Particle colour Particle size / 
nm (DLS) 

Polydispersity 
Index 

Red 381 0.091 
Green 826 0.437 
Blue 311 0.070 
Cyan 549 0.090 
Magenta 259 0.095 
Yellow 254 0.077 

 
Figure 2 shows a scanning electron micrograph of typical 

particles, demonstrating their uniform size. It is believed that close 
control of polydispersity in the polymeric particles will be 
advantageous for EPD fluid electro-optics and ultimately, front-of-
screen performance. 
 

 

 

 
Figure 2. Scanning Electron Micrograph of Various Particles 

3.2 Particle Zeta Potential and Electrophoretic 
Mobility 

Table 2 shows zeta potential and electrophoretic mobility data 
for typical red, green, blue, cyan, magenta and yellow particles. 
Electrophoretic mobility, UE, of the particles in low dielectric 
constant media is determined by the Henry equation (1)16. 

 
 

(1) 
 
Where ε is the dielectric constant of the dispersion medium, η 

is viscosity of the dispersion medium (Pa s), and ζ is the zeta 
potential. When using particles <1μm diameter in low dielectric 
media, the Huckel approximation is used16, and F(ka) is assumed 
to be 1.  

Table 2. Polymer Microparticle Zeta Potential and 
Electrophoretic Mobility Data 

Particle 
colour 

Zeta 
Potential 
mV 

Electro-
phoretic 
Mobility  
m2/Vs x10-10 

Zeta 
Potential 
mV 

Electro-
phoretic 
Mobility 
m2/Vs x10-10 

-ve charge particles +ve charge particles
Red -63.9 5.93 +49.3 4.57 

Green -87.6 8.13 +76.5 7.10 

Blue -24.8 2.31 +89.5 8.30 

Cyan -65.2 6.05 +68.3 6.34 

Magenta -73.2 6.79 +65.7 6.10 

Yellow -70.9 6.58 +51.6 4.79 

 
From the data shown above, it can be seen that particles can 

be synthesized in all colours with either a positive or a negative 
charge. The polymer microparticles demonstrate high values of 
electrophoretic mobility. This is beneficial for electro-optical 
properties. 

3.3 Particle Spectra and Colour  
Figure 3 and Tables 3a & 3b show the colour gamut of 

particles in CIE L*a*b* colour space under D65 illumination and 
optical density data for typical red, green, blue, cyan, magenta and 
yellow particles, when suitably formulated into EPD fluids. 
 

 
Figure 3. CIE L*a*b* colour gamut of particles  
(D65 illumination.) 
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It is possible to increase the colour intensity and optical 
density by increasing either particle volume fraction in the fluid or 
dye content in the particle. Tunability of colour in the fluid, 
through either a large number of lower dye content particles or a 
lower number of higher dye content particles could be 
advantageous in pixel design. This increases the degree of 
flexibility for display designers in both transmissive and reflective 
applications. 

Table 3a. EPD Fluid colour data 

Particle 
colour 

Colour Data XYZ xy 
Measured under d65 illumination, 50 �m cells 

X Y Z x y
Red 37.672 32.567 10.567 0.4662 0.4030 

Green 37.957 46.696 29.233 0.3333 0.4100 

Blue 23.377 27.577 55.847 0.2189 0.2582 

Cyan 18.824 26.592 40.172 0.2199 0.3107 

Magenta 24.672 17.176 22.313 0.3845 0.2677 

Yellow 59.458 67.143 24.226 0.3942 0.4452 

Table 3b. EPD Fluid optical density (OD)  and L*a*b* colour data 

Particle colour 
(volume fraction) 

Colour Data L* a*b* 
d65, 50 �m cells 

OD d65, 
50 �m 
cells L* a* b* 

Red (0.1) 63.81 23.58 45.24 0.5193 

Green (0.35) 73.99 -19.40 25.51 0.4294 

Blue (0.1) 59.50 -11.92 -30.70 0.4701 

Cyan (0.46) 58.59 -29.84 -15.53 0.5976 

Magenta (0.1) 48.48 41.28 -7.31 0.5556 

Yellow (0.1) 85.58 -9.85 53.35 0.2632 

3.4 Electro-optical studies 
The EPD fluids so far described comprise a single species of 

polymeric microparticles plus additives in a low dielelectric 
constant fluid, such as dodecane. Fluids of this type are suitable for 
in-plane or shutter mode EPD pixel architectures. This concept can 
be extended to blends of two different-coloured particles in a 
single fluid to achieve more complex in-plane electro-optical 
effects. It is also possible to blend coloured particles with white 
reflective particles (e.g. TiO2 or polymer / inorganic hybrid 
particles) to achieve reflective EPD fluids and demonstrate vertical 
switching EPD pixel architectures.  

3.41 Vertical EPD switching 
In order to demonstrate vertical EPD switching of  fluids 

containing dyed polymeric microparticles and white reflective 
particles, test cell was constructed from ITO coated glass and a 
PET cell spacer of 50 & 100�m. No microcellular division was 
used in the test cell. 

Figures 4a and 4b show the two switched states of a simple 
vertical EPD test cell (+60VDC & -60VDC), containing a blue to 
white reflective EPD fluid, under D65 illumination. Contrast ratio 
for this cell was measured at 7.3:1 for the blue to white switching 
curve. The EOC as measured at 20ºC with an Autronics DMS-301 

(type A illumination) is shown in Figure 5 for a comparable 50�m 
cell. Contrast ratio for this cell was measured at 3.2:1 for the blue 
to white switching curve. The unsymmetrical nature of the EOC in 
Figure 5 may be due to charge and density differences in the two 
particle types.  
 

 
Figures 4a and 4b. Vertical EPD switching of Blue / Reflective White fluid 
(100�m cell gap; CR = 7.3:1). 

 

 
Figure 5. Electro-optical Curve for Blue / Reflective White EPD fluid 
(50�m cell gap; (CR = 3.2:1). 

Figures 6a and 6b show the two switched states of a simple 
50�m vertical EPD test cell (+30VDC and -30VDC) containing 
Magenta dyed polymeric particles and white reflective polymer / 
inorganic hybrid particles under D65 illumination.  The EOC as 
measured at 20°C with an Autronics DMS-301 (type A 
illumination) is shown in figure 7.  Contrast ratio for this cell was 
measured at 2.4:1 for the magenta to white switching curve. 
 

   
Figures 6a and 6b. Vertical EPD switching of Magenta / Reflective White 
fluid (50�m cell gap; CR = 7.3:1). 
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Figure 7. Electro-optical Curve for Magenta / Reflective White EPD fluid 
(50�m cell gap; (CR = 2.4:1). 

Figures 8a and 8b show images of a prototype CMY cell. 
Each segment contains the dyed polymeric particle and a reflective 
white.  The cell gap is 100�m. 
 

   
            Coloured state      White state 

Figures 8a and 8b. Vertical EPD switching of Cyan / reflective white fluid, 
Magenta / Reflective White fluid, and Yellow / Reflective white fluid. 

3.42 In-Plane Electrophoretic Switching 
In order to demonstrate in-plane electrophoretic switching, a 

simple test cell was constructed (see Figure 9). Interdigitated 
Indium-Tin oxide electrodes were created by photolithography and 
etching (10�m electrode width, 500�m interelectrode spacing, 
80nm ITO thickness). A 13�m Mylar spacer was applied and the 
cell cavity was completed by use of a top glass substrate. The 
electrophoretic fluid was introduced into the cavity by capillary 
action and the cell edge was then sealed with a UV cured optical 
adhesive. 

 

 
 
Figure 9.  In-Plane Electrophoretic test cell diagram (Single Component 
fluid) 

 
Figures 10a and 10b.  In-Plane Electrophoretic switching 
Photomicrographs for Single Component fluid. 

Figures 10a and 10b show photomicrographs of a single 
component EPD fluid comprising positively charged blue particles 
in a clear continuous phase. Figure 10a shows the fluid 
approximately 10 seconds after application of 30V DC to the 
electrodes. Figure 10b shows the fluid approximately 10 seconds 
after reversal of the field. Video sequences, which will be shown 
during the oral presentation, demonstrate smooth motion of 
particles between the electrodes. Quantitative electro-optical 
measurements were not performed on this cell/fluid architecture. 
The same test cell architecture can also be used to demonstrate in-
plane electrophoretic switching for dual component EPD fluids, 
shown in Figure 11 and Figures 12a and 12b. Here, a two 
component fluid, comprising positively charged blue particles and 
negatively charged red particles demonstrates the independent 
switching characteristics of the two particle types. 
 

 
Figure 11. In-Plane Electrophoretic test cell diagram (Dual Component 
fluid) 

Magenta to White 

White to Magenta 
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Figures 12a and 12b. In-Plane Electrophoretic switching 
Photomicrographs for Dual Component fluid. 

4. Conclusions 
The particle concept described in this paper will enable the 

development of displays with improved colour and brightness 
properties when compared to colour-filter-based approaches. The 
development of “ready to use” coloured EPD fluids, based on dyed 
polymeric microparticles will offer an improved range of design 
opportunities to the displays industry. 
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