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Abstract 
Inkjet printing and plasma sintering of a silver electrode 

pattern on polymer substrates for applications in microfluidic 

systems is presented. The pattern consists of several finger 

electrodes and contact pads that exhibit lateral dimensions of 

30 x 80 mm². The pitch between neighboring finger electrodes is 

270 µm and the smallest linewidth of the finger electrodes realized 

is 90 µm. Commercially available silver nanoparticle dispersion is 

used as ink. The electrode layout is printed onto a cyclic olefin 

polymer (COP) substrate. Prior to printing the substrate is 

activated using argon plasma in order to ensure good wetting. The 

as-printed features are then sintered using argon plasma. This 

sintering technique enables sintering of the nanoparticles in a 

selective manner without heating the substrate above its glass 

transition temperature. Sintering times are in the range of 5 to 

15 minutes and the resulting resistivity of the printed features is 

approximately 57 times the bulk silver value. 

Introduction 
Drop-on-demand inkjet printing as a production technology is 

rapidly developing. Using this technology, different materials can 

be applied onto various substrates in an additive way. Therefore, 

no masking is required which makes inkjet printing a flexible and 

low cost process in contrast to standard lithography based 

processes. 

Inkjet printing of conductive tracks has been investigated 

during the last years extensively. As conductive features are crucial 

for the function of printed electronic devices, numerous research 

groups are working in this field.[1] Examples of printed electronic 

devices include printed RFID tags and organic thin film transistors 

(OTFT).[2] Research on OTFTs involves all-printed devices [3] as 

well as hybrid devices that are fabricated using both printing and 

lithography processes.[4] Other popular applications that are 

currently under investigation are printed solar cells [5] and organic 

light-emitting devices.[6] 

The use of silver [7] and gold nanoparticle inks [8] for the 

formation of conductive features is well-known and such inks are 

commercially available from different suppliers. The use of copper 

nanoparticle inks has also been reported,[9] although the sintering 

of copper inks is challenging due to the formation of copper oxide. 

Inkjet inks based on metal nanoparticles allow relatively low 

sintering temperatures because the melting temperature of small 

metal particles depends on the size of the particles.[10] This leads 

to melting temperatures of nanoparticles that are significantly 

lower than the melting temperature of the bulk metal. However, if 

the tracks are thermally sintered this typically involves 

temperatures above 200 °C, which is not suitable for temperature 

sensitive polymer substrates like PET and polycarbonate. 

Due to this restriction, different research groups have 

investigated alternative sintering methods. Sintering using argon 

plasma with a 13.56 MHz RF generator has been successfully 

reported for single conductive lines.[11] Other sintering methods 

include microwave sintering,[7] selective laser sintering,[8] 

electrical sintering,[12] and sintering using a pulsed broadband 

lamp.[13] In the work presented here, the use of argon plasma 

sintering is extended to a larger electrode pattern using commercial 

silver nanoparticle ink. 

The electrode pattern that was printed is intended for use in 

microfluidic devices that employ chip-based electrophoresis. At 

present conductive patterns in such devices are typically created 

using standard lithography based PVD processes or thick film 

processes like screen printing.[14] Both of these approaches 

require masking of the substrate. We therefore investigate inkjet 

printing as a flexible and less const intensive alternative. 

Experimental Details 
For printing the conductive features a commercially available 

silver nanoparticle dispersion in a mixture of ethanol and ethylene 

glycol from Cabot Corp. (Cabot CCI-300) is used as ink. Diameter 

of the silver nanoparticles ranges from 30 nm to 50 nm and the ink 

contains 20 wt% of silver. Printing is done using piezoelectric 

printheads from Dimatix Inc. (Galaxy 256/30, nominal droplet 

volume 30 pl) controlled with a Dimatix Apollo II printhead 

support kit. Positioning of the printhead is realized using a six-axis 

robot (Kuka Roboter GmbH, KR 5 sixx R650). This robot exhibits 

a travel range of 650 mm with a positioning accuracy of 20 µm and 

allows for 3D printing of structures, while for the described layout 

only 2D printing is necessary. Furthermore, the large travel range 

allows for use of custom sample mounts and other equipment like 

a standard hotplate for printing on heated substrates. 

Communication between the robot and the printhead support kit is 

established with custom LabVIEW based software. The robot is 

mounted on a granite table equipped with air suspension to ensure 

mechanical isolation from external vibrations. Fig. 1 shows the 

printing setup. 
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Figure 1. Dimatix printhead mounted on 6-axis robot, detailed view of printhead 

positioned over substrate holder (right). 

We have used cyclo olefin polymer (COP) foils as substrate 

material (Zeonor, thickness 200 µm). The glass transition 

temperature of these foils is 136 °C. In order to make sure that no 

residuals of the protective foil remain on the substrates we have 

cleaned them with isopropanol. Without any further pretreatment, 

the surface energy of the substrates is too low to ensure good 

wetting of the ink. Therefore, we have applied argon plasma 

activation prior to printing. The plasma chamber used for the 

activation (Plasma Finish Gmbh, Schwedt, Germany) is equipped 

with a 13.56 MHz RF generator. For the activation, relatively low 

RF power and short times were sufficient to enhance wetting. 

Typical parameters for the activation were RF powers in the range 

of 30 to 50 W, argon flow of 80 to 120 ml min-1 and activation 

times of 5 to 60 s. These parameters lead to a chamber pressure of 

approximately 30 Pa during activation. Contact angle of the 

activated substrates has been determined using de-ionized water as 

test fluid. 

A sketch of the electrode pattern that we have printed is 

shown in Fig. 2. Such a pattern can be used for microfluidic chips 

that employ chip based electrophoresis. The layout consists of 

several contact pads and finger electrodes. The desired application 

puts the following requests on printed geometries: a finger 

linewidth of 70 µm is required; pitch between neighboring 

electrodes is 270 µm. A structure height of < 1 µm is favorable for 

further processing steps. 

The printheads used are equipped with 256 nozzles and 

therefore allow for short processing times when multiple nozzles 

are used. For reasons of repeatability and amount of ink needed to 

purge the printheads we have printed the features with one single 

active nozzle. The electrode pattern is thus printed in several lines, 

process direction is indicated in Fig. 2. The image file is input into 

the software as a 1-bit tiff file. Each black pixel in the file 

corresponds to one droplet printed. In order to ensure reproducible 

printing conditions the ink reservoir is heated moderately to 

approximately 35 °C. Firing voltage of the printheads was set 

between 60 and 80 V with pulse durations of 10 µs. The drop 

spacing in process direction was varied in the range of 50 to 

70 µm. With the velocity of the robot arm set between 5 and 

10 cm s-1, this corresponds to printing frequencies in the range of 

0.7 to 2 kHz. The line pitch was varied between 50 and 100 µm. 

After printing, the height of the unsintered features is 

measured using a white light interferometer from Zygo Inc. (New 

View 600). Selective argon plasma sintering is then applied with a 

40 kHz plasma generator (Diener Electronic, Nagold, Germany). 

Plasma power was set to 150 W, typical sintering times were 5 to 

15 minutes. 

For the determination of resistivity, geometry and resistance 

of sintered structures are measured. The cross sectional area of the 

printed features is measured using white light interferometry. 

Length of the printed structures is determined using a microscope 

equipped with an encoded xy stage. Resistance of the printed lines 

is measured using a standard multimeter. 

 

 
Figure 2. Sketch of electrode layout with detailed view of finger electrodes. 

Results and discussion 
Fig. 3 shows the first version of the printed electrode pattern 

that we have realized. For this version, a 60 s plasma pretreatment 

of the substrate has been utilized, leading to a contact angle of 

approximately 40°. A printhead with nominal droplet diameter of 

39 µm has been used. With this setup, a droplet spacing of 67 µm 

in process direction and a line pitch of 100 µm generated 

continuous lines without line bulging. Table 1 lists the detailed 

process parameters used for plasma activation, printing and 

sintering. Using these parameters the electrode pattern was 

successfully printed and plasma sintered as can be seen from 

Fig. 3. The different contact pads, alignment marks and capacitor 

structures were printed in the desired way and neighboring finger 

electrodes are not touching each other. The substrate material is 

not bent, the plasma treatment has thus not led to a heating of the 

substrate above its glass transition temperature. The height of the 

printed layers before sintering is 1.8 µm and 

approximately 200 nm after sintering. A profile plot of the finger 

electrodes is given in Fig 3. The finger electrodes have a width of 
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300 µm, which is clearly above the required value of 70 µm and 

not acceptable for the application in a microfluidic chip. Therefore, 

we have modified some of the process parameters. 

 

 
Figure 3. First version of inkjet printed and plasma sintered electrode pattern. 

Linewidth of finger electrodes is approximately 300 µm. 

As the spreading of the ink droplets on the substrate is 

determined by the surface tension of the ink and the surface energy 

of the substrate, we have modified the plasma pretreatment. Instead 

of 60 s of plasma treatment we have decreased the activation time 

to 5 s, which leads to a contact angle of 73° instead of 40°. 

In order to further reduce the linewidth we have heated the 

COP substrate during printing to a temperature of 70 °C, which 

stimulates solvent evaporation during flight. This leads to smaller 

droplet volume and thus thinner lines. Fig. 4 shows profiles of 

single printed lines on a heated COP substrate. 

 

 
Figure 4. Profiles of lines printed on COP substrates heated to 70 °C. Firing 

voltage of the printhead was set to 60 V (left) and 80 V (right). Droplet spacing 

was 50 µm for both lines. 

In the left part of Fig. 4, the firing voltage of the printhead 

was set to 60 V, leading to a linewidth of approximately 50 µm, 

which is already too narrow for the desired application. We have 

therefore fine-tuned the linewidth by varying the firing voltage to 

80 V. This leads to 70 µm wide lines as can be seen in the right 

part of Fig. 4. Alternatively, the droplet spacing can be altered to 

affect the line width.[15] 

Using these optimized parameters we have printed and plasma 

sintered the complete electrode pattern. The result can be seen in 

Fig. 5. The different patterns were produced correctly. The 

linewidth of the finger electrodes is 90 µm, which is an increase 

compared to the single lines discussed above. A possible reason 

for this increase is a non-uniform temperature distribution on the 

surface of the hotplate, leading to lower temperatures at certain 

spots and thus to larger spreading of the droplets. Therefore, 

further optimization of the process parameters will be carried out 

in the future. 

Table 1: Process parameters used for printing and sintering of 

the electrode pattern. 

Parameter Version 1 Version 2 

RF power (activation) 30 W 30 W 

Activation time 60 s 5 s 

Contact angle 40° 73° 

Droplet spacing 67 µm 50 µm 

Line pitch 100 µm 50 µm 

Substrate temperature 22 °C 70 °C 

Firing voltage 60 V 80 V 

Pulse width 10 µs 10 µs 

RF power (sintering) 150 W 150 W 

Sintering time 15 min 15 min 

 

 
Figure 5. Improved version of inkjet printed and plasma sintered electrode 

pattern. Linewidth of finger electrodes is approximately 90 µm. 
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Figure 6. SEM images of unsintered Ag ink (upper part) and ink after 15 

minutes plasma sintering (lower part). 

Fig. 6 shows SEM images of unsintered and plasma sintered 

ink patterns on COP. Before sintering, the individual nanoparticles 

with diameters of approximately 30 to 50 nm can be clearly 

distinguished. After 15 minutes of plasma sintering at 150 W RF 

power the nanoparticles have formed a coarse Ag structure. Grain 

and neck formation of sintered nanoparticles is visible, as well as 

some cavities. This sintering renders the printed structures 

electrically conductive. We have measured a resistivity of 

approximately 90 µΩ cm on the sintered pattern, which is 57 times 

the bulk silver resistivity. This was found to be sufficient for the 

desired application. 

A simple tape-and-peel test has been performed to determine 

the adhesion of the sintered layers on the COP substrate. When 

applying standard office scotch tape on the sintered structures and 

after peeling off the tape, the sintered layers remain on the 

substrate without observable damage. 

Conclusion 
We have successfully printed and plasma sintered a larger 

electrode pattern on a polymer substrate. We have used 

commercially available silver nanoparticle suspension as ink. The 

linewidth of printed features was optimized between 70 and 90 µm 

by varying the firing voltage of the printhead and by heating the 

substrate. With these modifications we have printed the electrode 

pattern. We have shown that with the equipment used the desired 

resolution is possible, but still further optimization of the process 

parameters is necessary. Selective sintering was achieved by argon 

plasma exposure. This resulted in conductive features with a 

resistivity of approximately 57 times the bulk silver value in only 5 

to 15 minutes. We have tested the adhesion of the printed features 

with a simple tape-and-peel test. A more detailed study on the 

adhesion is planned. In the future we also plan to test printing of 

the electrode pattern with a gold nanoparticle ink. This would be 

beneficial for specific applications where silver is not favorable 

due to its antibacterial behavior. 
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