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Abstract  
Electrochromic polymer films were patterned by a soft 

lithography technique using a nanopatterned PDMS mold to 
generate submicron size gratings. The redox currents (i

p
) were 

significantly increased due to the facilitated diffusion of counter 
ions associated with redox processes at the EC polymer electrode 
as analyzing cyclic voltammetry (CV) performed at different scan 
rates (ν). As a result of such facilitated charge transport, the 
electrochromic (EC) properties of the patterned electrode were 
greatly enhanced  to give high EC efficiency, including the 
coloration (E

c
) and bleaching efficiencies (E

b
).   

Introduction 
Electronic displays and imaging based on conducting 

polymers (CP) have attracted considerable attention since 
conjugated polymers can be easily processed with inexpensive 
technologies at low temperatures. 1-8 However, current technology 
toward practical applications are rather limited due to the problem 
of slow response time. In electrochromic devices (ECDs), 
electrons are injected or extracted under an applied electric field 
while charge balancing counter ions are simultaneously transported 
into or out of the EC layer.9,10 Therefore transport of electrons and 
ions is directly related to EC properties such as coloration 
efficiency and response time.9-12 Recently, fast response times and 
high color contrast have reportedly been achieved with EC devices 
fabricated with a nanostructured EC electrode since the 
nanostructures can provide a large surface area. Such a 
nanostructured EC electrode can be prepared through layer by 
layer (LBL) deposition11,13 or by adopting nanotemplates such as 
anodized aluminum oxide (AAO),14 TiO

2
 nanoparticles,8 Si 

nanowires,10 and block copolymer templates.15 As the charge 
transport in an EC device occurs vertically between the working 
and counter electrode, the design of a vertical EC nanostructure is 
indeed a challenge.  

In this study, an EC device based on a nanopatterned 
polythiophene (PTH) film electrode was fabricated. The PTH 
electrode was prepared by directly nano-imprinting a conductive 
polymer film with a nanopattern replicated PDMS mold.    

Experimental Section 
The template consisted of nano-gratings in a 1 cm ⅹ 1 cm 

area with a width of 250 nm and a height of 90 nm. The gap 
between the gratings was 15 nm. The nanopattern transfer from the 
PDMS stamp to the composite films was carried out using 
Nanoimprint (HIS-400U, Hutem Inc.). The thickness of the 
polymer films was deetermind via profilometry measurements 
performed with an Alpha Step profilometer (Tencor Instruments, 
Alpha-Step IQ). The accuracy of the profilometer was 1 nm. 

A liquid electrolyte containing 0.1 M lithium perchlorate 
(LiClO

4
) in acetonitrile was isolated between the two electrodes by 

a spacer. The electrochemical properties were studied using an 
electrochemical analyzer (CH Instruments Inc, CHI624B). 

Electrochromic properties were determined by an in situ 
spectro-electrochemical setup.8-12 The coloration efficiency and 
response time of the ECDs were determined at the absorption max 
under a square-wave switching potential using a chronocoulometry 
in liquid electrolyte having an EC window size of 1.0 ⅹ 1.0 cm2. 
The EC response time for coloration and bleaching was determined 
at a 70 % absorption change11,12 under the given step potentials. The 
electrochromic efficiency (EE) including the coloration and 
decoloration efficiency was determined by dividing the Δabs by 
the injected/ejected charge per unit area. The UV-Vis spectra were 
recorded for chloroform solutions with a AvaSpec (AvaSpec-2048. 
light source: AvaLight-DHS). 

A 635 nm diode laser with an intensity of 3.3 mW was used to 
measure the diffraction from the patterned electrochromic devices 
at colored and bleached states. The intensities of the reflected (I

r
), 

transmitted (I
t
) light and I

a
 (‘I

d
+I

r
’ or ‘I

d
+I

t
’) were determined using 

a photodetector. I
d
 was obtained from a difference between the I

a
 

and I
t
 or I

r
. UV-Vis spectra were attained with an Avaspec-2048 

fiber optic spectrometer. Atomic force microscopy (AFM) was 
carried out in tapping mode at room temperature with a Dimension 
3100 SPM equipped with a Nanoscope IVa (Digital Instruments, 
Santa Barbara, CA, USA). 

Patterning of PTH film by PDMS Imprinting.   
PTH films were nanopatterned via soft lithography performed 

at room temperature. A PDMS mold consisting of periodic lines 
was employed in the nanopatterning process. Nano-gratings (1D) 
were first patterned on a PTH film by a single imprinting at room 
temperature. The average roughness (Ra) values and surface areas 
were increased upon patterning. The nano-gratings on the PTH 
film were wider in period and shallower in depth than those of the 
PDMS master, as determined from AFM (Figure 1).  

 
Figure 1. AFM images of (a) PDMS master and (b) patterned PTH film by 
imprinting at RT .  
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Electrochemical properties of nanopatterned 
PTH film.  

Cyclic voltammetry measurements for the and patterned PTH 
films were performed in a three-electrode system using a solution 
of 0.1 M LiClO

4
 in acetonitrile.  All films exhibited several redox 

peaks characteristic of the polaronic and bipolaronic states of CP 
according to the following reaction:    

 ox (-e-)    ox (-e -) 

CPo + ClO4
-     CP+? ClO4

-       C P2+ 2ClO4
-       (1) 

             red(+e-)               red (+e-)         
(neutral)              (polaron, radical cation)   (bipolaron, dication)  

 
In eqn (1), ClO

4

- is a counter anion and e- denotes an electron. 
The redox peaks of the patterned films were shifted with a much 
higher intensity than those of the unpatterned film. The current 
increase could be mainly attributed to the increased surface area in 
the patterned films. Both the anodic and cathodic currents were 
linearly correlated to ν 1/2, which indicates that electrochemical 
doping of the entire PTH film occurred with no irreversible 
electrochemical reaction. The diffusion coefficient (D

f
) for the 

patterned electrodes were determined from the slope of the plot for 
the current vs ν 1/2. Interestingly, the diffusion coefficient for the 
patterned electrode was much larger than that of the unpatterned 
electrode. Therefore, as discussed in the literature, the electronic 
response of a conductive polymer-based device may improve as 
charge transport through the nanostructured electrode is enhanced 
due to fast diffusion at the electrode.  

Electrochromic (EC) properties of 
nanostructured P3HT electrodes.  

Transmissive-type EC devices were prepared with PTH films 
as a working electrode and ITO glass as a counter electrode.  The 
EC devices exhibited a reversible color change from red to 
transparent-blue when -2 to 2 V was applied. The EC response 
required a larger potential step than was expected from the solution 
CV. This reflects the fact that the CV of the 2-electrode system 
exhibited broad redox peaks at +2 and -2 V for oxidation and 
reduction, respectively, for the  patterned EC electrode. The 
UV-Vis absorbance changes of the EC cells was observed as the 
applied potential was changed from -2 V to 2 V as shown in Fgiure 
2(a). High optical reversibility and coulommetric reversibility were 
observed with a switching time of 20 s (Figure 2(b)). The optical 
contrast (Δabs) and coloratioamperometric plot of i

p
 against time 

under a step potential exhibited typical 1st order differential decay. 
The i

p
 drops faster so as to reach saturation in the atterned films, 

suggesting improvement in charge transport through 
nano-patterning. As a result, the response times for both coloration 
and bleaching were significantly reduced in the patterned PTH 
films. Furthermore, the electrochromic efficiency (E

e
) including 

the coloration (E
c
) and bleaching efficiency (E

b
), was higher in the 

patterned film. These results could be attributed to facilitated 
charge transfer through the nanostructured EC electrode. It is 
consistent with observations when the diffusion coefficient was 
determined (described above). The bleaching (p-doping) process 
was faster than the coloration process (de-doping), which matched 

to the results on diffusion coefficients. The E
e
 increased as the 

diffusion coefficient (D
f
) was increased.   
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Figure 2. (a) UV-Vis absorbance spectral change of the ECD with patterned 
PTH from neutral to oxidation state at the applied potential; -2 V, -1.5 V, -1.2 
V, -1 V, -0.5 V, 0 V, 0.3 V, 0.6 V, 0.9 V, 1.2 V, 1.5 V, 1.8 V, and 2.0 V (from 
top to bottom). (b) Optical response of the ECD in response to the potential 
change of -2/+2 V. 

Switching times are dominated by the diffusion of counter 
ions through the films during the redox step. Fast optical response 
times (in seconds) were observed in the patterned systems because 
the patterned morphology of the polymer promotes the mobility of 
charge compensating counter ions. The response time for 
decoloration is faster when compared to that for coloration, which 
agrees well with the larger D

f
 associated with the decoloration.  

Reversible electrochromic diffraction from a 
nanostructured EC window.  

 The diffraction light intensity and thus, the efficiency (DE) 
of a grating depend on the optical properties (the absorptivity k and 
the refractive index n) of the grating material. Therefore, it is 
possible to use an electrochemical stimulus to modulate the DE of 
a redox-active grating. Light diffraction was examined by in-situ 
detection of the diffracted light (I

d
) from the cell under a 635 nm 

laser, by both transmittive and reflective mode. Photographs of the 
diffracted light image from a patterned ECD at -2 V (colored) and 
+2V (bleached) are shown in Figure 3. The EC diffraction cells 
showed fast and reversible light modulation within a second as 
shown in Figure 3.   

 A more thorough account of EC diffraction is forthcoming. 
However, a key aspect of note is that the overall redox behavior of 
the patterned P3HT electrode could be applied to an electrically 
driven diffraction lighter, where ion diffusion is accompanied by a 
redox process control. This would allow for control over both color 
change and the refractive index.    

-2 V +2 V -2 V
 

Figure 3. Photographs of the diffracted light image from the patterned ECD, 
showing reversible diffraction modulation at -2 V (colored) and +2V 
(bleached). 
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Conclusion 
We prepared PTH nanopatterns by imprinting technology. 

The charge transport characteristics of PTH films were examined 
with the nano patterns. Due to the increase in surface area, the 
charge transport was facilitated in the patterned films with an 
increased diffusion coefficient (D

f
) for counter anion. This resulted 

in an improved response time and higher coloration and bleaching 
efficiencies for the P3HT-based electrochromic devices.  In the 
patterned cell, diffraction modulation using an electrochromic 
operation was achieved. Optimization and mechanism of the EC 
response at the nano patterned PTH films will be discussed.   
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