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Abstract 
As advancements thin-film and flexible electronics like 

printed organic solar cells and organic LEDs bring these devices 

close to market entry new processing technologies for cost-

effective, high quality production have to be developed. Laser 

technology provides a huge potential to fulfill the demanding tasks 

that come with the transition from lab to factory. 3D-Micromac 

looked into the possibilities of ultra-short pulsed lasers for 

scribing of transparent conductive layers as well as active layers 

of organic solar cells. This paper presents the results of this 

research. 

Introduction  
Thin-film and flexible electronics, especially OPVs and 

OLEDs, represent a growing market with excellent future 

prospects. Large progress has been made in the past years 

regarding efficiencies and manufacturing technologies.  

3D-Micromac has put great effort into the laser structuring and 

scribing of transparent conductive oxide (TCO) materials such as 

indium tin oxide (ITO). Extensive trials have been conducted using 

ultra-short pulsed lasers of varying wavelengths in combination 

with different optical setups to achieve the best scribing results. 

While glass substrates were used as a starting point for our 

research, the focus has been shifted to flexible substrates such as 

polyethylene terephthalate (PET) and polyethylene naphthalate 

(PEN) films. The advantage of these flexible materials is the 

possibility to use high volume printing processes for creating the 

stack layout which reduce overall production costs. Laser micro 

structuring is not limited to the transparent conductive layers 

however. It can also be used to scribe or modify the functional 

layers of a device. As our research targeted organic solar cells 

(OPV), we looked into the possibilities of laser micro machining 

of the light absorbing layer which consisted of a blend of poly(3-

hexylthiophene) and phenyl-C61-butyric acid methyl ester 

(P3HT:PCBM) (see section “OPV layout” for further details). 

Experimental setup 
As stated before, we mainly used ultra-short pulsed lasers for 

our research. Extensive trials have been done with picosecond 

laser sources. The favored system generates pulses of 9 to 12 ps. 

The wavelength can be 1064 nm, 532 nm or 355 nm with a 

maximum average power of approx. 50 W (1064 nm, 1 MHz 

maximum pulse repetition rate). A second laser source generating 

femtosecond pulses was used to examine the influence of even 

shorter pulses and the positive effects they might have on the 

machining process. This laser emits pulses of 1064 nm or 532 nm 

with pulse durations as low as 254 fs. The maximum average 

power is approx. 10 W (1064nm, 600 kHz pulse repetition rate). 

As a comparison a nanosecond laser source operating at 1064 nm 

and emitting pulses of 120 ns was put to use.  

Due to the long period of time during which the trials have 

been conducted the optical setup was modified several times. 

Basically a galvanometer scanning system combined with a f-Theta 

lens was used to process the substrates. Beam expanders have been 

used occasionally to widen the beam to allow for better 

focusability. The exception to this standard setup was the trial 

conducted with the femtosecond laser operating at 532 nm. As it 

was not possible to acquire a robust enough f-Theta lens in time, a 

fixed lens in combination with a x-y-stage was used instead.  

The first part of our research concentrates on the scribing of 

ITO layers on glass and PET substrates. While the glass substrates 

came from a single source, ITO covered PET films from different 

suppliers have been examined. 

As part of a german research project concentrating on flexible 

organic photovoltaics, active layers of P3HT:PCBM on top of a 

poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) 

(PEDOT:PSS) and ITO film system have been scribed. The goal 

was to ablate P3HT:PCBM and PEDOT:PSS without damaging 

the subjacent ITO (P2 scribe). While the ITO layer was sputtered 

onto the glass substrate, the PEDOT:PSS and P3HT:PCBM were 

spin-coated. 

Results of ITO scribing 
As a starting point we looked into the scribing of ITO layers 

on glass substrates. Standard nanosecond lasers did not yield 

acceptable results as the substrate showed cracks which weaken the 

substrate and have a negative impact on light transmission. 

Additionally the ITO layer tended to bulge several microns (see 

figure 1). This has to be avoided at all cost as the bulges may 

create interconnections between the following layers. 

 

 
Figure 1. Scribed ITO on glass substrate using a nanosecond laser (1064 nm)  

 

However excellent results were achieved using pico- and 

femtosecond lasers. The glass substrate remained completely 
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undamaged and bulging of the ITO layer at the edge of the trench 

could be avoided (see figure 2). The wavelength 1064 nm proved 

to be the best choice though 532 nm and 355 nm can also be 

employed yielding comparable results. While the step from nano- 

to picosecond pulses has a great impact on the scribing quality, the 

transition from pico- to femtosecond pulses does not result in 

better scribing quality. There are no advantages that would 

compensate for the significantly higher cost of ownership for a 

femtosecond laser source. 

 

 
Figure 2. Scribed ITO on glass substrate using a picosecond laser (1064 nm) 

 

As part of the research project some the substrates, structured 

with the picosecond laser source, were used to produce working 

organic solar cells. Photon conversion efficiencies of up to 2% 

were achieved this way.  

Having demonstrated the possibility of laser scribing of ITO 

layers on glass substrates the next logical step was to advance to 

flexible substrates. PET film is currently the most common 

substrate due to the relatively low price though PEN film is used 

occasionally. Using the nanosecond laser the PET film was heavily 

damaged making it completely unfeasible for further processing 

(see figure 3).  

 
Figure 3. Scribed ITO on PET film substrate using a nanosecond laser 

(1064 nm) 

Significantly better samples could be produced using the 

picosecond laser (see figure 4). Especially at 1064 nm very low 

bulging of ITO at the edge of the trenches could be observed. 

These bulges were as low as 20 nm which is acceptable in regard 

to further processing such as coating. Damages to the PET film 

substrate could not be completely avoided. Working organic solar 

cells could be produced using these substrates which achieved 

photon conversion efficiencies of up to 0.5%. 

 

 
Figure 4. Scribed ITO on PET film substrate using a picosecond laser 

(1064 nm) 

 

Comparable results could be achieved using 532 nm but there 

are no real advantages except for better focusability compared to 

1064 nm. As PET shows high absorption in UV spectrum 355 nm 

proved to be the least favorable choice. Acceptable samples could 

be produced but the processing window was significantly narrower 

compared to 1064 nm and 532 nm making it more challenging to 

establish a safe machining process. Again focusability might be the 

only reason to use 355 nm for ITO scribing.  

For future industrial applications it might be useful to be able 

to scribe the ITO layer from the backside through the PET film. 

Using 1064 nm it is possible to ablate the ITO without damaging 

the PET film more than with normal front side machining. 

However substrates of some suppliers showed significantly higher 

damage than others. This might be due to the exact material 

composition but needs further investigation. 

In contrast to the results on glass the femtosecond laser 

operating at 1064 nm yielded a real improvement when machining 

ITO on PET film (see figure 5). The damage to the substrate could 

be further reduced and also the bulges could be reduced. As with 

the picosecond laser operating the femtosecond laser at 532 nm did 

not improve the results. 
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Figure 5. Scribed ITO on PET film substrate using a femtosecond laser 

(1064 nm) 

 

Having produced several samples of structured ITO substrates 

which in turn could be used to produce working organic solar cells 

the next step was to look into the machining possibilities for the 

active layer of the solar cells. Scribing the active layer without 

damaging the subjacent conductive layer corresponds to the scribe 

commonly known as P2 for standard inorganic solar cells. For our 

solar cells the active layer is P3HT:PCBM though we also tried to 

ablate the subjacent PEDOT:PSS layer in order to decrease the 

electric resistivity between the ITO and the top electrode. 

Ablating the P3HT:PCBM with the nanosecond laser resulted 

in heavy damage to the active layer which seemed to melt and 

burn. However the PEDOT:PSS could not be removed without 

removing the ITO in the process. 

 

 
Figure 6. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

nanosecond laser (1064 nm) 

 

The picosecond laser operating at 1064 nm produces slightly 

better results but still the active layer was heavily damaged. This 

means that the pulse duration does not have such a significant 

impact on machining of the active layer as it has on machining of 

the ITO. The bulges of the active layer effectively prevent any 

further processing. Additionally the PEDOT:PSS could not be 

ablated without damaging or ablating the ITO. 

 

 
Figure 6. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

picosecond laser (1064 nm) 

 

As P3HT:PCBM shows high absorption in the visible 

spectrum, 532 nm was expected to be a better choice. Trials 

confirmed this expectation as figure 7 clearly demonstrates. 

Though the active layer shows slight changes on the edges of the 

trench, there is no burning of the P3HT:PCBM. Still the 

PEDOT:PSS cannot be removed without removing the ITO. 

 

 
Figure 7. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

picosecond laser (532 nm) 

 

The last trials with the picosecond laser involved 355 nm. 

Using this wavelength results slightly better compared to 532 nm 

could be achieved (see figure 8). There are no visible changes in 

the active layer. However UV radiation damages the active layer so 

it is thinkable that 355 nm also leads to degradation of the areas 

surrounding the scribe but this has still to be confirmed. Removing 

the PEDOT:PSS is still not satisfying. 
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Figure 8. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

picosecond laser (355 nm) 

 

The results of femtosecond laser operating at 1064 nm are 

comparable to those of the picosecond laser as figure 9 shows. 

Again the P3HT:PCBM shows signs of burning and the 

PEDOT:PSS is either ablated together with the ITO or not at all. 

 

 
Figure 9. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

femtosecond laser (1064 nm) 

 

The best results so far concerning the ablation of the 

PEDOT:PSS layer could be achieved with the femtosecond laser 

operating at 532 nm. The process parameters are critical but 

manageable. As stated in the experimental setup section an x-y-

stage had to be used. Further trials will be conducted to confirm 

that this had no fundamental influence on the scribing process.  

 

 
Figure 10. Scribed P3HT:PCBM and PEDOT:PSS on glass substrate using a 

femtosecond laser (532 nm) 

 

Conclusion 
It has been demonstrated that ultra-short pulsed lasers such as 

pico- and femtosecond lasers are well suited to the tasks of 

scribing of TCO and active layers. While nanosecond lasers 

significantly damage the substrates and the functional layers, ultra-

short pulsed lasers can produce high quality samples. Scribing of 

ITO on glass substrates is generally uncritical and can be easily 

done using a picosecond laser with the common wavelength of 

1064 nm. When it comes to flexible substrates such as PET, the 

picosecond laser with 1064 nm is a good choice again. While the 

femtosecond laser yields even better results it also comes with an 

increased cost of ownership which has to be taken into account.  

For scribing of the active P3HT:PCBM of organic solar cells 

the wavelengths of 532 nm and 355 nm of the picosecond laser 

proved to be a good choice. However no satisfying solution for 

ablation of the PEDOT:PSS layer using the picosecond laser has 

been found so far. Only the femtosecond laser operating at 532 nm 

proved to be able to fulfill that task. However it remains to be seen 

if the PEDOT:PSS layer has a significant negative impact on the 

performance of the solar cell in case it is not or only partially 

removed. 
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