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Abstract 

In the last couple of years Inkjet printing speeds have increased 
dramatically. It can be expected that commercial inkjet printing 
with associated ‘web-press’ systems soon will meet or exceed the 
very high printing speeds of impact printing methods, such as 
offset. Microporous paper coatings used for modern photo inkjet 
paper are known for their extremely fast drying behavior and ink 
drop absorption, compared to standard paper. Fumed silica with 
its unique fractal structure is the key ingredient, hence creating 
pores and capillaries of the microporous coating. It can also be 
used on standard printing paper by applying very thin layers at the 
sizes press of the paper machine. The result is impressively 
improved  print quality but also enhanced absorption speed of the 
ink drops. In this technical study, we used high speed cameras to 
measure the speed of absorption of water and a model ink at 
different modified paper surfaces.  

Introduction 
Fumed silica is commonly used in coating formulations to 

produce the high quality photo inkjet media that feature instant 
drying times, brilliant colors, uniform ink absorption, superb 
resolution and water fastness. The fractal structure of the 
aggregated particle is the basis which allows the microporous 
network to be developed within the coating at a finer scale than 
conventional pigments. This structure provides the essential 
capillary action needed to transport the ink vehicle quickly away 
from the media surface.  

Recently we introduced a concept [1] that transfers the basic 
idea of this technology to plain paper. We have performed 
extensive trials on a pilot paper machine and carried out additional 
analytics, which we reported last year [2]. There were first 
indications, that even a very thin layer of fumed silica without an 
extended pore system like in inkjet photo paper can increase the 
imbibition speed of the ink drops dramatically. This paper will 
report first results of high speed camera measurements following 
single drops interacting with the paper surface. 

Paper Sizing Concept 
Paper sizing is a generally used technique applied to most 

office and printing papers. Adding fumed silica dispersions to the 
size press formulation offers an easy and affordable way to 
introduce nanostructured particles and a respective pore system to 
the surface. It effectively raises the print quality of the 
correspondingly treated papers to another quality class.  

The process makes use of aqueous dispersions of fumed silica 
(“AEROSIL®”), which are available in both cationic and anionic 
variants. When used in combination with starch or PVA as binder 
or sizing agent respectively, they form the matrix for the 
formulation that is applied on the paper machine online with the 

aid of puddle-type or premetered size press. Our pilot tests carried 
out on a Kämmerer paper machine have proven the feasibility of 
the process on a simple puddle-type press and provided important 
discoveries. Even better results are expected on modern 
premetered size presses, as leading paper manufacturers have 
already impressively confirmed in operating tests. 

The improvements in print quality are eye-striking. Especially 
ink coverage and homogeneity, but also optical density, print 
through and general print appearance show significant 
performance enhancements [2, 3, 4]. 

 

    
Figure 1. Following the drop by high speed camera. From left to right:  
1) just before impingement, 2) just after spreading, 3) during imbibition, 4) just 
after complete imbibition. 

Need for Speed 
Actual commercial inkjet web presses like the HP Inkjet Web 

Press or OCE’s Jetstream series can print with linear speed of up to 
3.3 m/s, which calculates to 2865 full color duplex A4 pages per 
minute [5]. Interestingly, this number is similar to the output of the 
first industrial impact printing machines at the end of the 19th 
century. Assuming a length of three meters of the paper web from 
print head to rewinding, one ink drop has as little as one second to 
be absorbed by the substrate to avoid wetting the opposite side of 
the web. Furthermore, since multiple print heads are used in a row, 
the available drying time between two print heads is only a fraction 
of a second. 

The manufacturers of commercial web presses emphasize that 
their speed can be scaled up linearly by the numbers of print heads 
used in a row. Therefore, in contrast to other competing digital 
printing technologies the web speed is not limited. This means that 
we are just at the beginning of high speed web press generations. 
One can doubt that classic printing paper is able to fulfill these new 
speed requirements and smart concepts to overcome this issue are 
necessary. Paper sizing with fumed silica is a possible solution. 

Theory 
For a single drop, inkjet printing on microporous media can 

be described as a three stage process: 1) spreading, where the 
respective surface energies and properties of the ink liquid and the 
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microporous framework play a role, 2) absorption of the ink drop 
by capillary forces into the pores, and finally 3) drying or 
evaporation of the liquid. For the spreading phase Desie et al. [6, 7] 
could show that it is determined by the hydrodynamic properties 
and is very fast. The absorption phase can be well described by a 
capillary wicking process according to the theory of Davis-
Hocking. Evaporation is the slowest process only being finalized 
after many seconds ore even minutes.  

The kinematics of the interesting stage 2 can be described by 
the well-known Lucas-Washburn equation, giving the drop 
penetration depth d as a square root of time: 

η
θσ

2
)cos()( trtd ⋅⋅⋅=  

The boundary parameters are the surface tension of the liquid 
σ, the contact angle θ and the viscosity η. The most important 
parameter is the pore radius r, which is in the range of 5 to 40 nm 
for most relevant microporous systems. The smaller the pore, the 
deeper the liquid can penetrate into the media (capillarity). In 
contrast, large pores support fast transport and ensure enough 
absorption volume. Hornig et al. have proven the applicability on a 
series of different pore sizes using a modified Bristow wheel [8]. 

Experimental 

Speed Measurements 

 
Figure 2. Experimental setup for high speed camera measurements 

In figure 2 the experimental setup for the high speed camera 
system is shown. A Microdrop(TM) piezo drop generator is used to 
generate droplets of 100 micrometer diameter at about 1 m/s. The 
droplets are impacted on the different paper samples underneath 
the generator. For the observation a Photron Fastcam SA1 was 
used with a long distance microscope. The frame rate was varied to 
achieve high temporal resolution for the measurement of the 
penetration process, but still capture the whole process. For 
illumination a Bowens Flashlight was used. 

Materials Used 
For the trials, the sizing solutions used were at 11 % solids. 

Either cationic starch or nonionic starch were dissolved in a jet 
cooker and held at a constant temperature of 60 °C before use. 
They were mixed with the fumed silica dispersions at different 
ratios. All results given in this paper were obtained with silica to 
starch ratios of 1:1 or 2:1 (solid/solid). The sizing applied by a 
simple puddle type size press has a weight of approx. 0.7 g/m2 per 

side. Table 1 lists the physico-chemical properties of the fumed 
silica dispersions used. 

More details of the paper sizing samples like paper 
composition etc. are given in [2]. In addition, samples of sizing 
trials on a commercial scale are shown. These papers have an 
estimated sizing weight of 2.5 g/m2 using enzymatic starch. 

 

Table 1: Properties of used fumed silica dispersions 
Product name AERODISP® 

WK7330 
AERODISP® 
W7330N 

Surface charge cationic anionic 

pH 3 10 

Stabilizing additive cationic polymer NaOH 

Silica content 30 % 30 % 

Aggregate size 120 nm 120 nm 

Surface analysis 
Looking at the paper surface at large magnification under an 

electron microscope (see Figure 3) provides an idea of the critical 
factor that determines good printing results and high speed 
properties: a very thin, porous coating acts like a tiny filter and 
covers the paper fibers.  

 
Figure 3. SEM micrograph of the paper surface sized with AERODISP® 
WK7330 + cationic starch (2:1)  
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Results 

Improved Print Performance 
Extensive print evaluations were carried out with the surface 

sized paper samples. Details were published in [2]. Figure 4 shows 
the visible improvements of the concept and figure 5 summarizes 
the results. Especially high ink homogeneity and gamut are the 
most eye-striking benefits. But the subjective impression of 
sharpness is also improved because fuzziness and roughness 
decline, particularly in intercolor bleeding. 
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Figure 5. Relative print quality improvements using AERODISP® 

The paper can absorb the liquid in the inks unhindered, while 
dyes or color pigments attach to the surface of the silica particles, 
thereby enriching the visible surface. This leads to the pronounced 
optical ink densities that are observed. The paper surface also 
becomes visibly more homogeneous, which in turn has a favorable 
effect on the other properties mentioned. 

Penetration behavior 
For the concept presented here, dynamic penetration 

measurements made with ultrasound using the Emco DPM-33 
show that water-based liquids have a distinctly faster penetration 
behavior. Figure 6 shows the respective transmission curves. 
Comparing the maximum of the curves indicates that the fumed 
silica based sizing is a factor 5 faster than the pure starch sizing. 
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Figure 6. Penetration analysis with water using emco DPM-33. The marked 
curve (paper sized with WK7330, cationic corn starch 2:1) shows a much 
faster wetting and a quicker capillary penetration than the reference (paper 
sized with cationic starch only) 

While the Emco measurement is looking at the speed of a 
complete wetting of the paper sample, the high speed camera is 
following single drops, which of course is more realistic. However, 
the results confirm the trend. Standard papers treated with a pure 
starch sizing need up to 3 seconds to absorb a single drop of 100 
µm diameter. The fumed silica containing paper surfaces are a 
magnitude faster: 
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Figure 7. Results of high speed camera measurements. Times are given as 
differences between impact and complete disappearance of the drop. 

Figure 4. Inkjet printing results after surface sizing with cationic starch (left) 
and with AERODISP® WK7330 + cationic starch (2:1 with respect to solid, 
coating weight approx. 1 g/m2).  
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Beside these measurements with water as liquid, we have 
performed some experiments using a model ink liquid with a 
surface tension of approx. 40 mN/m (DI-water with 3% 
Dipropylene glycol, 6% 1,2-Propanediol, 5% 1-Methoxy-2-
Propanol, 1.6% 1,2-Hexanediol). The speed of drop absorption for 
all papers decreased slightly as expected from the Lucas-Washburn 
equation. 

One may object that 100 µm drop diameter is much bigger 
than the normal inkjet ink drop size of a few µm. In that sense our 
measurements can be regarded as a worst case scenario for 
multiple small ink drops hitting the same surface area 
simultaneously or just shortly after each other. 

Summary 
Beside the outstanding print performance with expanded 

gamut range and impressive ink homogeneity, plain paper sized 
with fumed silica based sizing formulations show extremely fast 
ink absorption, which no other means for increasing inkjet 
printability can offer. 

Although the fumed silica layer is thin compared to the well 
known microporous RC-photo papers, the same mechanisms seem 
to work. Capillary forces of the approx. 20 to 100 nm wide pores 
of the silica-based coating suck in the ink drops and distribute the 
liquid to the paper layer beneath. Dyes and/or color pigments 
inside the inks stay on the silica surface as the resulting print 
properties impressively show. In addition to the capillary forces 
the silica increases the hydrophilicity of the paper surface and 
therefore supports the drop surface interaction. 

The power of the concept is based on the special fractal 
structure of fumed particles. Mainly two products are 
recommended for this application, which are both easy to 
formulate and use: AERODISP® WK 7330 (30 % aqueous 
dispersion, cationic) and the anionic AERODISP® W 7330 N.  

Today we see the first generation of commercial inkjet web 
presses entering the market. The linear speed of the web just fits to 
standard paper. Next generations will surely show increased speed 
and will have a need for special paper with tailored ink absorbing 
surfaces. Other approaches used for tailored inkjet papers like 
multi-valent salts or special cationic polymers increase print 

properties, too.[13]. However, none of them show also increased 
absorption speed like micro-porous coatings based on fumed silica 
does. 
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