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Abstract 
The thermal performance of copy paper during fusing was 

studied by measuring the temperature and moisture content 
changes for a variety of different paper sheets. Sheet temperatures 
on the image and reverse sides were measured at different points 
in a continuous run Xerox photocopier. Sheet surface temperatures 
depend on basis weight, caliper, coating level and filler levels. 
Coated or highly filled sheets showed higher temperatures which 
persisted for longer times whereas those of lower densities were 
cooler. Moisture redistributions within the short time scale of 
fusing was insignificant. 

An analysis of heat and moisture transport within the sheets 
subjected to a rapid thermal pulse was conducted. A mathematical 
model was developed using the equations of transient energy and 
moisture transport. The model equations were solved using the 
finite element method to predict temperature and moisture content 
profiles and their evolution within the paper sheets. Thermal 
conductivity, heat capacity and moisture diffusivity of copy paper 
sheets were measured in the laboratory and used as inputs to the 
mathematical model to predict the temperature and moisture 
response in the fusing section. 

Excellent agreement was found between the model predictions 
and experimental temperature and moisture contents for several 
paper sheets under different conditions. The thermal conductivity 
and heat capacity are the critical parameters determining the 
temperature and moisture profiles and were strongly dependent on 
sheet structure. 

Introduction: 
Several processes subject paper sheets to thermal pulses. In paper 
drying, wet saturated paper sheets are subjected to a high 
temperature pulse on one surface. The newer high intensity drying 
processes rely on augmentation of the conventional drying 
mechanisms by pressure and capillary driven flows through the 
webs [1]. Paper sheets are subjected to similar thermal pulses in 
laserjet printing and photocopying applications. Here, toner 
particles on the sheet surface are fused to fasten the image by 
raising the surface temperature beyond the toner glass transition 
point. The surface temperature and thermal energy in the sheet are 
important quantities which determine the quality of the image and 
performance of the paper. 
Simula et al. [2] reported an investigation of the temperature 
response of a sheet subjected to a hot roll nip. Their mathematical 
model incorporated only the one dimensional transient heat 

conduction equation and as a result only the evolving temperature 
profiles within the paper sheets could be studied. Furthermore, the 
validity of their simulation is restricted to short times since 
moisture diffusion and convective transport processes become 
significant at longer times. A more comprehensive simulation of 
the transient thermal, moisture and pressure fields inside paper 
sheets traveling through a hot roll nip has been investigated by 
Bandyopadhyay et al. [3]. Their simulations considered the 
complete transient two-dimensional temperature, moisture and air 
flow velocity fields within the paper sheets as they traveled 
through the fuser nip. The anisotropy in the transport properties of 
paper sheets for the in-plane and Z directions was also 
incorporated in this study. The relevant energy, moisture and flow 
conservation equations were solved using a finite-volume method. 
The most important findings to emerge from this study were that 
the temperature and moisture content fields were critically 
dependent on the sheet properties. The investigations reported 
earlier were not supplemented by accurate measures of the paper 
sheet properties (thermal conductivity and others) nor were they 
verified by experimental measurements. In the present work, we 
use a simplified version of the earlier mathematical model and 
confirm its predictions with experimental measurements of sheet 
temperatures in a high speed digital copier.   

Mathematical Model for Transport in the 
Fusing Section 
We consider a paper sheet which is initially at equilibrium at 
known moisture and temperature conditions, traveling through a 
nip consisting of hot and cold rollers as shown in Fig 1. The two 
rollers are kept at constant but different temperatures and expose 
the sheet to a temperature pulse on its surface as it moves through 
the nip. The paper sheet is idealized as a porous hygroscopic 
medium for analysis of the transport processes. The most important 
variables are the temperature T(t,x,z) and the moisture content 
q(t,x,z) fields. Since the pore space present in the paper sheet can 
hold water vapor, the concentration field c(t,x,z) is also relevant. 
Although we track the evolution of these three fields, 
experimentally measurable quantities are usually the temperatures 
at the top and bottom surfaces and the energy and moisture 
transferred to the environment. Our new model is enhanced 
compared to the earlier one of Bandyopadhyay et al. [3] because 
we consider the dynamics of the vapor space coupled with the 
moisture content of the fibers in the sheet through a separate 
diffusion mechanism.  
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Table 1  

 
Paper 
Thickness, 
mm 

Ash 
content, % 

Specific 
Heat, 
J/(gK) 

Density, 
g/cm3 

Thermal 
Conductivity, 
W/(cmK) 

Thermal 
Diffusivity, 
cm2/s 

1 0.1368 8.69 1.55 0.773307 0.001094 0.000913 

 
 

 
Fig. 1. Schematic of model domain and temperatures and external heat and 
mass transfer coefficients. 

Model Equations 
The equations for transient moisture transport are given below for 
the water in the pore space and fibers [4].  
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The above equations allow for water vapor transport by diffusion 
and convection within the pore space and diffusion locally between 
the fibers and the pore space. When the time scale for diffusion 
within the fibers is small, e.g. when the fiber phase is relatively 
thin, local equilibrium may be assumed [3]. However, local 
equilibrium of moisture in non-isothermal situations is not likely to 
be valid although the fiber and pore spaces may be assumed to 
have the same temperature on account of the relatively high 
thermal conductivity of the fibers. The average thermal 
conductivity of the sheet is denoted by kp and  heat capacity by cp. 
The energy equation is then given by 
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Darcy’s law along with an overall mass conservation (continuity) 
equation closes the above system of equations (see [3]).  

Initial and Boundary Conditions 
The paper sheet is assumed to be in equilibrium with its 
surrounding environment and is at a moisture content given by q0 
and temperature T0, both of which are uniform throughout the 
sheet.  
As the sheet travels through the nip region, the top surface is 
subjected to an increase in temperature to Th whereas the lower 
surface remains at T0. After the sheet leaves the nip region, the 
environment is at the initial temperature T0 but heat and moisture 
can be transported out of both these boundaries. The relevant rates 

of transport at the boundaries are given by the heat and mass 
transfer coefficients which are assumed to be known. The energy 
and moisture fluxes at the two boundaries are given by the 
following equations. 
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The surface temperature and surface vapor concentration are 
denoted by Ts and cs respectively. The surface vapor concentration 
is an additional variable in this equation which is defined as the 
value that is at equilibrium with the paper sheet at its local 
moisture content, qs. The following equation of equilibrium defines 
and completes this model. 

),( sss Tcfq =
 (6) 

The equilibrium moisture-humidity relationship has been denoted 
by f(cs, Ts) in the above equation. 

Model Parameters 
For the purpose of the simulation, we used the following model 
parameters given in Table 1. The paper sheet thickness, porosity 
and other parameters for a baseline case were drawn from actual 
measurements of the thermal conductivity [5, 6] and heat capacity 
of coated and uncoated copy paper. The other parameters were 
obtained from indirect or direct measurements of conditions inside 
typical copiers [3]. Also, for the purposes of our simulation, we 
considered only a one dimensional solution to the above model 
equations although our model implementation was fully two-
dimensional.   
 
MODELING RESULTS 
Our study of the sheet response was characterized by some key 
variables that can be measured easily. These correspond to: the 
sheet surface temperature, the average sheet temperature, the 
average moisture content and how these parameters vary with 
sheet properties. The key sheet properties we varied were: sheet 
thickness, sheet density, sheet thermal conductivity and heat 
capacity. We considered also the case of a coated (composite) 
sheet which was modeled as a sheet consisting of two layers of 
different properties.  
Fig. 2 shows the temperature at the point of contact  between the 
hot roller and the sheet (denoted by Th). This temperature rises 
rapidly to the hot roller temperature, remains there as the nip 
travels over the surface and decreases back to the ambient value 
after the nip. 
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Fig 2. Temperature profile in contact Fig. 3. Surface temperatureas a 
 point of hot roller and paper sheet  function of time 

Fig. 3 shows the temperature of the sheet’s surface as a function of 
time as it travels through the nip region. The surface temperature 
increases rapidly to the roller temperature as shown in this figure. 
The cool-down of the surface is much slower because it is 
governed primarily by the surface heat transfer coefficient in the 
after nip region. Also shown in this figure are the heat-up and cool-
down curves for sheets of different thermal conductivities. 
Increased thermal conductivity leads to rapid heating and similarly, 
to faster cooling since heat is able to move relatively fast through 
the sheet thickness. The increase in surface temperature controls 
the fusing process and it is seen that for the range of thermal 
conductivities considered here, the heating-up profile is 
satisfactory. The dynamics of the cooling curve determines the 
time that the surface remains hot for the fusion process. The 
thermal conductivity of the sheet seems to control the cooling 
curve to a greater extent than the heating curve.  
Fig. 4 shows the complete two dimensional temperature field 
within the paper sheet at a time when the sheet has almost 
completed its travel. That the thermal conductivity has a significant 
influence on the extent of penetration of the temperature field is 
obvious. Higher thermal conductivity also results in significant 
heating of the bottom side of the sheet and consequent energy loss.  
 

          
Fig. 4. Temperature distribution in                Fig. 5. Average temperature of 
paper sheet                                                   paper sheet 

Figs. 5 & 6 show the average temperature and average moisture 
content within the sheet for these conditions. These averages are  
calculated based on the one dimensional profiles through the 
thickness. The average temperature rises rapidly due to heating and 
cools after exposure to the nip. The moisture content decreases as 
sheet heats up but since moisture is mostly reabsorbed into the 
sheet as it cools down, the net loss in moisture content is relatively 
small.  
 

          
Fig. 6. Average moisture content in              Fig. 7. Heat flux on top surface of 
paper sheet                                                   paper sheet 

     
Fig. 8. Temperature of top surface        Fig. 9. Temperature of top surface of   
of paper sheet for different values        paper sheet for different values of         
of specific heat (J/gK)                           sheet thickness 

Fig. 7 shows the heat flux to the top surface of the sheet during the 
travel. The flux rises rapidly within a short time interval 
corresponding to the rise time of the contact temperature. This 
increase is because the sheet’s surface is much lower than the hot 
roller temperature during this time. The flux decreases after the 
surface reaches the hot roller’s temperature because the gradient in 
temperature at the surface has moderated during this time interval. 
The surface contact temperature drops when the sheet leaves the 
nip resulting in a steep decrease in the heat flux. The flux becomes 
negative, i.e. the sheet begins to lose heat to the surroundings in 
the after-nip region. The heat loss to the environment moderates as 
the surface cools to the ambient temperature, showing the slower 
exponentially decreasing negative heat flux in the after nip region.  
Fig. 8 shows the top surface temperature evolution for sheets of 
different heat capacity and density. We observe that higher heat 
capacities and densities tend to damp the rise in temperature and 
tend to damp the dynamics. Both heat-up and cool-down are 
affected as can be seen from this figure. Increased sheet thickness 
has an interesting effect on surface temperature. Fig. 9 shows the 
impact of changing sheet thickness on the surface temperature. 
Beyond a certain value of the thickness, the sheet is insensitive and 
the surface temperatures profiles do not change.  
Fig 10 shows corresponding temperature fields in two dimensions 
(i.e. the MD-ZD planes). Fig. 11 shows the surface temperature 
rise of a two-layered sheet consisting of a base sheet with a coating 
layer on top in comparison to the same sheet consisting of only the 
base layer without the coating. The surface temperature of the 
coated sheet rises and cools rapidly as compared to the base sheet. 
The higher thermal conductivity and density of the coated sheet are 
responsible for this behavior. The corresponding temperature fields 
within the sheet show the clear asymmetry caused by the coating. 
Increased thermal diffusivities result in deeper penetration of the 
temperature pulses into the sheets and also higher retention times 
for the thermal energy. The thermal response is also dependent on 
sheet thickness for small thicknesses.    
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Fig. 10. Temperature distributions in paper sheets with 0.002 cm and 0.015 
cm thicknesses 

 
Fig. 11. Coating influence on surface temperature 

EXPERIMENTAL PROCEDURE 
A commercial copier, the Xerox Docutech 6180 was instrumented 
with four temperature sensors connected to two computers through 
data acquisition systems. Two sensors were inserted in the cabinet 
at different locations near the paper path and close to the fuser roll. 
An infra-red sensor connected to a T type thermocouple was used 
to sense the temperature at the surface of the paper sheet as it came 
out of the fuser section. A Flugt IR thermometer was mounted 
separately and targeted at the surface of the pressure backing roll 
using a laser ranging sensor. This was connected to a separate 
computer and data of the surface temperature of the backing roll 
was acquired. Fig 12 shows a picture of the internal of the copier 
with the sensors attached. Fig 13 is a schematic showing the 
locations of the sensors. Table 2 shows the characteristics of the 
paper sheets used for the test. These were commercially available 
copy paper and were identified as samples 1 through 4.  

EXPERIMENTAL RESULTS AND 
COMPARISON OF MODEL PREDICTIONS 
Fig 14 shows the four temperatures measured by the sensors for 
paper sample 1. The copier was run for 1000 copies to allow a 
reasonable steady state to be attained.  The paper was a standard 
copy paper with BW of 72 GSM (20 lb/3000 sq ft ream). Other 
properties are as listed in Table 2. It took approximately 500 copies 
for the temperature of the sheet surface to reach steady state. The 
ambient temperatures were constant at 25 C. The paper surface 
was at 90 C and the pressure roll was at 65 C. The pressure roll 
surface temperature decreased with time until it reached a steady 
state. During the heat up period when no copying occurs, the 
pressure roll and the fuser roll are in (imperfect) thermal contact 
which results in heating of the pressure roll to an initially high 

temperature. The pressure roll temperature decreases with time as 
it loses heat to the paper sheets.   
 

   
Fig 12. Picture of the interior of Xerox Docutech 6180 with sensors placed in 
the paper path. Sketch of the various sensors is shown below. 

 
Fig 13. TC1 – Thermocouple (T type) for measuring ambient environmental 
temperature, near paper surface. TC2 – Thermocouple (T type) for measuring 
ambient temperature near pressure roll. TS – IR sensor with K type connector 
for paper surface after fuser (approx. 8 cm). TP – IR camera sensor with laser 
ranging. Temperature of fuser roll. 

Table 2. Properties of paper sheets used in experiments. 
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Fig 14. Temperatures of various                   Fig 15. Temperature of paper                                                       
sensors with machine running                      surface for different copy paper                                                          
paper 1. Paper surface (IR 1) is the             grades. Heavier paper grades                                              
highest temperature. Copier                         (higher BW) result in smaller                                            
achieves steady state after about                 surface temperature. The paper 4                                                   
700 copies. Run for 1000 copies.                 sheet has higher surface temp-                                           
Ambient, TC1 and TC2 are approx-             erature probably due to higher                                               
imately the same. Copier speed is               thermal conductivity (higher                                                    
180 ppm.                                                      thermal diffusivity also). 

Fig 15 shows the paper surface temperature for the paper samples 
1 through 4. The surface temperature was the highest for sample 1 
which had the smallest caliper, basis weight and density. These 
sheets tend to have the least thermal capacity and can heat up more 
rapidly than heavier grades. Samples 2 and 3 are cover copy paper 
with higher basis weights. The surface temperatures are  
significantly lower in these cases. Sample 4 is a glossy copy paper 
with high filler level which cause higher thermal conductivity and 
sheet density although the specific heat tends to be lower [6]. The 
sheet surface temperature is higher than its counterpart cover stock 
(80 lb). The pressure roll temperatures decrease with each of these 
sheets as shown in Fig 16. The decreased temperature is due to the 
higher sheet thermal capacities as well as higher sheet thicknesses. 
Both these serve to lower the bottom surface temperature of the 
paper sheets as they travel through the fuser section. Fig 17 
summarizes all the experimental measurements for the 
temperatures for the paper sheets. The fluctuations are caused by 
the gaps between the sheets during their travel as well as the 
modulation of the temperature measurements with the response 
characteristics of the thermometers (IR & thermocouples). By 
comparison, we observe that the magnitude of the fluctuations 
decreases with increased thermal mass and conductivity of the 
sheets. This is expected from the transient thermal response of 
paper sheets.   

 
Fig 16. Press roll temperature for different paper sheets. Press roll 
temperature also decreases with increased BW. However, paper 4 shows the 
smallest temperature whereas paper 3 is higher. This may be because the 
thermal pulse in the coated paper gets dissipated in the top layer and does not 
penetrate deep enough into the base sheet. The magnitude of oscillations for 
paper 1 are highest. Magnitude of oscillations decrease with BW. 
 

          

             

            
Fig 17. Temperatures within copier for each paper grade. 

Fig 18 shows the average sheet temperature on the top surface of 
the paper as measured by the sensor and also the corresponding 
average calculated by the mathematical model. A very close 
correspondence between the surface temperatures was obtained. 
 

 
Fig 18. Average temperature of paper on sheet surface – comparison of 
model predictions with experimental results. 

DISCUSSION AND CONCLUSIONS 
The thermal response of the sheets can be seen to be strongly 
impacted by the sheet properties. In particular, the sheet basis 
weight, density, thermal conductivity and heat capacity are critical 
in determining this response. Since the thermal properties are 
dependent on sheet moisture content, the response would also be 
sensitive to moisture content although this was not directly 
investigated in this work. 
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