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Abstract 
The paper describes a dynamic model for a toner-laden sheet 

being bent on a rotating fusing surface with a radius.  The toner is 

treated as visco-elastic, with a complex modulus that is a function 

of temperature and frequency.  Other inputs include toner 

thickness, media modulus, and media thickness.  The model can 

quantify the contribution of the following to successful stripping: 

stripping radius, process speed, toner rheological properties, 

toner temperature, toner thickness, and media stiffness.  The model 

can also be used to predict the impact of more complicated 

scenarios, like varying image/paper bleed dimensions and external 

stripping devices. 

Motivation  
The release of toner-laden media from a fuser, commonly 

referred to as stripping, is a function required by all fusers.  Self-

stripping, a condition in which no external forces are required, is 

highly desired, as it avoids the use of stripper fingers that wear the 

fusing surface or an air knife that can cause differential cooling. 

We present here a geometric stripping model that calculates 

the stripping stresses induced in the toner-fuser interface as a sheet 

with visco-elastic toner is bent on a fusing surface with a radius.  A 

geometric stripping model of this type, which includes toner 

mechanical properties, permits one to not only design a fuser 

capable of stripping a given toner but to also define the stripping 

requirements for a given toner.  Thus this modeling technique 

permits one to view stripping as a system-level optimization of 

fuser design and toner materials. 

Geometric stripping model 
 

Paper is modeled as a thin plate under a load distribution.  

The model considers that a portion of the paper length is 

conformed to the radius and the remainder is not, producing a 

length of the paper to be under toner strain being that called the 

under-strain-length Lus.  Toner is modeled as a visco-elastic 

material attached to both the paper and the radius.  As the radius 

rotates, the paper bends, pulled to the radius by the toner under 

tension.  The toner layer's dynamic stress and strain depend on the 

paper dynamic loading as well as the toner complex stiffness.  This 

is calculated by using a discrete model which calculates for each 

time step the toner stress and strain, which is a result of the 

mechanical interaction between the toner and paper as well as the 

state of previous time steps.  The model calculates the stress level 

in the toner-fuser interface as a function of time, assuming that the 

toner does not separate from the rotating fusing surface radius, to 

calculate maximum stress and determine if stripping will occur. 

 

 

 

Paper bending on a radius – model 
 

For a beam or thin plate with a distributed load bending on a 

radius, there is a given moment M at which its radius of curvature 

ρ equals the radius R and so starts touching the radius. As shown 

by Timoshenko [1], a cantilevered thin plate under load has a 

radius of curvature ρ = M/(2D) at the cantilevered end A.  If the 

plate is tangent to a radius R at the same point A then from the 

equation 

R

D
M it

2
lim =  (1) 

we can obtain the limiting moment Mlimit at which the plate starts 

becoming in contact with the radius beyond the point A.  

For the particular case in which the paper is bent over a radius 

due to the load induced by a toner layer under tension then the 

paper will only be subjected to a load in the length at which the 

toner is stretched which is called the under-strain-length Lus.   

 

 

Figure 1. Schematic of Geometric Stripping Discrete Model 
 

The paper deflection is calculated using the moment area 

method as described by Timoshenko et al. [2].  The vertical 

deflection at the tip of the paper δv is calculated as a function of the 

moment distribution Mi which is a function of the load distribution 

qi equal to the toner stress distribution σi (due to the model 

assuming a unit paper width) and the moment at the tip called M1 

as shown in Eq. 2.   
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where ∆L: element length, D: bending stiffness, nmax: number of 

under-strain elements, n: model step.  The model step n relates to 

the simulated time t as defined by t=(n-1)Ts, where Ts is the model 

time step. The element length ∆L relates to the time step Ts and the 

process speed v by ∆L= Ts v. The number of under-strain elements 

nmax=Lus / ∆L is calculated each iteration step by checking the 

location n1 at which it’s corresponding moment M1 exceeds the 
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limiting moment Mlimit (from Eq. 1) is exceeded, and so the number 

of under-strain elements nmax=n1 - 1. 

 Similarly the horizontal deflection at the tip of the paper δh is 

calculated adding up the horizontal deflection of each element due 

to their angle calculated using the moment area method described 

by Timoshenko et al. [2] as shown in Eq. 3. 
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Based on the paper deflection the gap between the paper and 

the radius at the lead edge of the toner is calculated using Eq. 4. 

[ ] [ ] [ ]( ) [ ]( )[ ] RnRnnLngap vhustip −−+−=
2/122 δδ  (4) 

Mechanical interaction between toner and paper 
While the paper advances and bends on the rotating fusing 

surface radius the toner is subjected to normal strain within the 

under-strain length Lus=(nmax-1)∆L, with that strain being a 

maximum at the lead edge of the image and zero at the point were 

the paper is conformed to the radius.  The normal strain 

distribution is defined by Eq. 5 which assumes the strain 

distribution grows from zero to εtoner,i=1 proportional to the fourth 

power of the under-strain length.  
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The toner stress distribution qi is calculated for every model 

step based on the history of its stress distribution qi and strain 

distribution εi and its complex modulus, using a standard 

difference equation (Eq. 6) as defined by Oppenheim et al. [3].   
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where a0, ak and bk are difference equation coefficients, and M and 

N are the feedforward and feedback order respectively, defined by 

the inverse of the toner complex modulus in z-transform form as 

shown in Eq. 7.  
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At each time step n the model iterates so that the stress 

distribution qi yields a paper deflection such that the gap at the 

lead edge of the toner equals the toner thickness extension as 

defined by Eq. 8. 

( ) toneritonertip tgap ⋅= =1,ε  (8) 

 

Toner complex modulus model 
The toner is modeled as visco-elastic with a complex shear 

modulus that is frequency and temperature dependent.  For 

standard electrophotographic toners, the complex modulus 

increases with frequency and decreases with temperature.  The 

toner complex shear modulus is G=G′+jG′′, where G′ and G′′ are 

known as the storage shear modulus and the loss shear modulus.  

The complex shear modulus G has a magnitude |G|=(G′2+G′′2)1/2 

and phase φ=tan-1(G′/G′′).  We have considered two types of 

models for the toner complex modulus G, both in the Laplace 

domain where s=jω.  The first is a generalized Maxwell model 

based on the representation by Jones [4], shown in Eq. 9. The 

second is a transfer function with multiple poles and zeros, shown 

in Eq. 10.  The author prefers the use of the pole zero method since 

it is more direct. 
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The temperature effect on the toner complex modulus was 

modeled using a shift factor aT=f(Ttoner,T0) as explained by Ferry 

[5], where Ttoner is the temperature of interest and T0 is the 

reference temperature at which the toner complex modulus was 

measured or the reference temperature used to create the complex 

modulus master curve.  The complex modulus can then be 

calculated for any operating temperature Ttoner using the following 

transformation GT(ω)=GTo(ωaT). Note Ferry [5] also makes a 

correction for the thermal expansion of the viscoelastic material by 

using a factor Tρ/T0ρ0 to affect the modulus, but the effect of that 

factor is small and is not considered in the present analysis. 

The Laplace form of the shear complex modulus as a function 

of temperature can be found by replacing s=jω with saT=jωaT  in 

Eq. 10: 
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Based on Eq. 11 the toner compliance can be calculated as 

shown in Eq. 12.  The toner compliance z-transform transfer 

function from Eq. 7 can be obtained by finding the z-transform 

equivalent to the Laplace transfer function from Eq. 12. This was 

found using the MATLAB® [6] c2d function which discretizes the 

continuous-time linear time invariant model using zero-order hold 

on the inputs and the model time step Ts.   
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Empirical Model

Empirical Model

 
Figure 2. Toner complex modulus model fit to empirical data   
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Fit to empirical data 
The toner complex modulus, obtained from rheological 

measurements, can be modeled by fitting Eq. 10 as shown in Fig. 

2.  This was done by first defining the complex modulus G0, which 

is the complex modulus at low frequencies defined by the low 

frequency complex modulus plateau.  Following the definition of 

G0, the pole and zero pairs were defined to fit the empirical toner 

complex modulus and phase.  The more pole and zero pairs used 

the better model fit that can be achieved. The toner complex 

modulus fit shown in Fig.2 was obtained by using 7 pole and zero 

pairs.   
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Figure 3. Typical simulation results from stripping model 

Simulation results 
As explained earlier the model assumes that the toner stress 

and strain can rise without bounds.  The model makes that 

assumption in order to quantify the maximum possible toner stress 

that can be reached at given stripping conditions.  That permits one 

to quantify the effect of different stripping inputs on peak stress 

and define the required level of stress for stripping to occur by 

correlating the model with empirical results. The peak stress 

required for stripping can then be linked to the maximum 

sustainable toner-fuser interface stress.  Note this stress is often 

modulated by release agents applied to the fuser surface (e.g., 

standard silicone oils) or by release agents embedded within the 

toner (e.g., standard polyester or polypropylene waxes).   

The maximum sustainable stress is not a fixed value, since it 

has been proven empirically that it is dependent on details of the 

fusing surface, the release agent, and the toner. The maximum 

sustainable stress was back-calculated from stripping tests with 

media and toner of known mechanical properties to estimate the 

level at which stripping is imminent.  An attempt was made also to 

measure the maximum allowable release-agent stress empirically 

but the available test equipment was unable to replicate the 

complex conditions to which the toner-fuser interface is exposed 

during the stripping process.  For that reason the author has found 

the former method more effective in calculating the maximum 

sustainable interface stress. 

In Fig. 3, the model clearly shows how the toner stress grows 

until reaching a peak, while the toner strain increases 

monotonically.  This results indicate that in the case where the 

peak stress does not exceed the maximum sustainable stress, the 

toner strain could increase to a level at which the toner could 

potentially split.  Also the under-strain length Lus increases with 

time and reaches a maximum as shown in Fig. 3.  For that reason 

an inflection in both the toner stress and strain can be observed at 

the time at which the under-strain length reaches a maximum. 
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Figure 4. Effect of individual factors on Max average toner stress 

Effect of individual stripping model inputs 
The effect of the individual stripping model inputs was analyzed 

by choosing a nominal value for all the inputs and using its 

corresponding maximum average stress as reference.  The result of 

that analysis is summarized in Fig. 4.  The factors that drove 

stripping were, in rough order of importance: 

– Toner temperature Ttoner. Reduces the stress dramatically 

at elevated temperature, but does not increase the stress 

below a certain temperature. When the toner temperature 

increases its complex modulus shifts to higher 

frequencies and so becomes more compliant and reduces 

the paper bending as well as the toner stress.     

– Stripping radius R. By making the stripping radius 

smaller the paper will bend around the radius at a higher 

rate as well as induce higher paper bending moment and 

so induce a higher toner stress due to the higher toner 

complex stiffness at higher rates (which is analogous to 

higher frequencies).    

– Toner thickness ttoner.  A thicker toner pile will increase 

its compliance and so reduce the paper bending as well 

as the toner stress.   

– Paper bending stiffness D. Toner stress increases with 

paper bending stiffness due to higher loads required to 

bend the paper around the radius.   
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– Process speeds v.  Higher process speeds will increase 

toner stress since both the paper will bend and the toner 

will strain at a higher rate.  At these rates, the toner has 

higher complex stiffness and as a consequence results in 

higher toner stress.  

Conclusions 
A model has been developed that quantifies the stresses to 

which a toner-fuser interface is subjected as a toner-laden sheet is 

run against a radius. This model enables one to quantify the effect 

of the toner complex modulus, temperature, toner thickness, 

stripping radius, paper bending stiffness, and process speed.  It can 

be easily upgraded to include the effects of more complicated 

interactions, such as the effect of lead edge bleed with paper 

weight, as well as with external stripping mechanisms such as an 

air knife. 

The model has been validated experimentally, and shows 

several interesting results.  Avoiding excessive fusing temperature 

will increase the stripping latitude dramatically.  This is due to the 

fact that the reduction of toner stiffness is limited, and as a 

consequence the reduction of max toner stress is limited as well. 

The stripping radius is the main fuser-design factor that has 

substantial effect on stripping.  The toner max stress is directly 

proportional to 1/R which means halving the radius will double the 

maximum stress induced on the toner. 

The model can be used in combination with empirically 

derived stripping latitude to define stripping radius requirements in 

combination with other design-limiting factors. The stripping 

model can also quantify the effect of toner thickness on stripping 

latitude when increasing toner mass per area and hence toner 

thickness. 
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