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arresting the imbibition in the large pores. Both scenarios are 
suggested to result in the smaller linear coefficient describing the 
change in effective length vs. √ݐ (Figure 8). Interestingly enough, 
support for the second scenario can be found in the similarity 
between the effective length associated with the decrease in linear 
coefficient (6-11µm) and the thickness of the silica gel aggregate 
layer estimated by the aggregates size (about 1-15 µm, Figure 8) 
and the measured average peak-to-peak value (13 µm, Table 1).  

Conclusions 
In this work imbibition rates of pL-sized droplets on coated inkjet 
papers were measured and correlated with the coating layer 
structure. The ability to distinguish between the different 
imbibition events is enabled due to the combination of fast imaging 
and the use of small droplets. It was found that imbibition into the 
two discussed samples provides a linear relation between the 
change in effective length and the square root of time, which 
implies a Lucas-Washburn type of imbibition. In the case of the 
gloss coated paper, only one linear coefficient is observed, while in 
the case of the matte coated paper, two linear coefficients can be 
distinguished. We suggest that the first linear coefficient arises due 
to the dominating imbibition in the inter-aggregates pore 
population at short time scales, and the second linear coefficient 
arises due to imbibition in the smaller intra-aggregate pore 
population that dominates at longer time scales. 
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Appendix 
Eq. 2 reads:  ݄௘௙௙ ൌ ܿ ൅ ௏బି ௏ሺ௧ሻగோ೏మሺ௧ሻ  where heff is the effective length, 

Rd(t) the droplet base radius at time t, V(t) the droplet volume at 

time t, and C and V0 are two terms discussed below. heff is 
proportional to the difference between V0 and V(t), and inversely 
proportional to the droplet base area given by ܴߨௗଶሺݐሻ. In the case 
where only one linear coefficient is observed (as on the gloss 
coated paper, Figure 6) C=0 and V0 is the initial experimental 
volume at t=0 (captured in the first frame). When two linear 
coefficients are observed (matte coated paper, Figure 8), in the first 
stage corresponding to the first linear coefficient, C=0, and V0 is 
the first experimentally observed volume, i.e. V0 =V(t=0). At a time 
t2, the second stage starts, corresponding to the second linear 
coefficient. Here V0 is the volume observed at the start of the 
second stage, i.e. V0 ൌ ܸሺݐ ൌ  ଶሻ , and C is an offset term equalsݐ
the effective length calculated at t=t2 (start of the second stage) but 
with V0 ൌ ܸሺݐ ൌ 0ሻ (the volume captured at t=0, the start of the 
first stage). This procedure is justified by the assumption that the 
second stage is dominated by imbibition in the small intra-
aggregate pores.   
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