Imbibition of Picoliter Water Droplets on Coated Inkjet Papers
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Abstract

When an impinged inkjet droplet is impacting a paper
substrate, it evaporates to the air and penetrates into the paper.
The imbibition dynamics are strongly dependant on the pore
structure on the surface and inside the substrate. In this work
picoliter (pL) water droplets were impinged onto two commercially
available matte and gloss coated paper sample. The imbibition
process was recorded and analyzed using a high speed imaging
system. Calculations of the volume change were done by
considering that the droplets are shaped as hemispherical caps.
The total drying time of water droplets of about 60 pL is 10-15 ms
on the gloss coated paper, and 30-150 ms on the matte coated
paper. In addition, the two samples show different regimes in the
imbibition process caused by the different porous structures
present in the samples.

Introduction:

Dynamics of liquid imbibition is of special interest due to its
industrial applications in e.g. printing processes, and it also offers
substantial fundamental research challenges. It is well established
that the drying time of liquid droplets on a permeable substrate is
set by the liquid evaporation rate and the imbibition rate, and that
the relative importance of these processes strongly depends on the
substrate characters such as porosity and surface energy as well as
on the degree of liquid volatility. When a liquid droplet is
impinged onto a paper coated with a porous layer it experiences
evaporation, expansion of the droplet base diameter and imbibition
into the porous matrix, as illustrated in Figure 1.

Figure 1. lllustration (not to scale) of spreading and imbibition of a liquid
droplet impinged on a paper coated with a porous layer consisting of pigment
particles of different shapes and a binder (red lines).
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The Lucas Washburn' equation is often used to describe the
capillary rise in porous networks. In the equation the height # of a
liquid meniscus in a cylindrical capillary with a radius R is given
by:

20R cos 0
h? = tT )
Where ¢ is time, o the liquid vapor surface tension, 6 the contact
angle and u is the liquid viscosity. The capillary rise described by
Eq. 1 is dominated by the viscous force exerted by the rising
liquid, and the Laplace pressure exerted by the curvature of the
liquid meniscus. Other equations exist in the literature describing
regimes dominated by other forces?, but the discussion of their
applicability is outside the frame of this work.
From the very first moment of the impact between the droplet and
the surface, both imbibition and expansion occur simultaneously.
While expanding, additional surface area is engaged in the
imbibition process. It is therefore useful to normalize the droplet
volume by the droplet base surface area, giving an average length
per surface area or effective length hey 3 defined as (see appendix
for discussion):
Vo= V(£)
TR(t) 2)
Where C and V) are correction terms, V() the droplet volume at
time ¢, and R,(?) the sessile drop base radius at time 7. When
imbibition takes place &, is related to the average distance
between the surface and the advancing liquid front inside the
porous network, although the latter will not be equal to A,y since
Eq. 2 is not taking into account the porosity of the medium,
tortuosity of the liquid path inside the porous medium and
imbibition taking place parallel to the surface (wicking)*.

Materials and Methods:

Two types of commercially available paper samples were used, i.e.
matte coated (230 g/m?, photo supreme double-sided matte,
Staples) and gloss coated (240 g/m?, photo plus gloss, Staples).

Liquid imbibition measurements were made using a DataPhysics
OCA40 micro (DataPhysics GmbH, Germany) capable of
delivering droplets with volumes in the tens of picoliter (pL) range.
The system includes a high-speed CCD camera (max. 2,200
images/s) with 50x magnification, a piezoelectric dispenser
(Microdrop GmbH, Germany) that delivers single 60 pL water
droplets with a speed of 1.5 m/s, and a Peltier sample stage for
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accurate control of the temperature. In all experiments the
temperature and relative humidity were kept constant at 23+1°C,
and 45 + 3% respectively. In the analysis, a solid liquid baseline
is set manually for each recorded sequence and then the analysis is
done automatically by the SCA 20 software. For the volume
calculation it is assumed that the droplets take the shape of a
hemispherical cap.

Images of the surfaces in air were recorded using an Atomic Force
Microscope (combined confocal Raman microscope/ AFM/SNOM
alpha300 RAS, WITec) in tapping mode using non-contact
cantilevers with a spring constant of 42 N/m.

XPS measurements were carried out by using a Kratos AXIS
Ultra®® X-ray photoelectron spectrometer (Kratos Analytical,
Manchester, UK). The samples were analyzed using a
monochromatic Al X-ray source operated at I50W (10 mA/15 kV).
The analysis area was below about 1 mm? (with most of the signal
from an area of 700 x 300 pum). In the analysis, low resolution
wide spectra (pass energy 160 eV) was used to quantify the
relative amounts of elements.

Scanning Electron microscopy (SEM) images were taken using
JEOL JSM-7000 and JEOL JSM-7401F, in a low landing energy
(0.8-1.3 keV, in gentle-beam mode). The sample area in the images
was not metal coated.

Results
Each experiment is recorded, resulting in a sequence of images.
Two typical image sequences are illustrated in Figure 2 and Figure

-0.4ms 0ms 0.4 ms 0.8 ms

Figure 2. A sequence of images showing a droplet impinged on a gloss
coated paper. The observed droplet volume at t=0 ms was 49 pL.

-0.4 ms 0ms

0.4 ms

0.8 ms

Figure 3. A sequence of images showing a droplet impinged on a matte
coated paper. The observed droplet volume at t=0 ms was 41 pL.

The chemical composition of the gloss coated paper surface
measured by XPS (Table 1) reveals a surface enriched in Alumina
pigments and binder (most probably poly(vinyl alcohol) or
gelatin). The surface roughness (Figure 4) exhibits rms 70 nm and
peak to peak value of 550 nm (Table 1), and the baseline is well
defined as seen from Figure 2.
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Figure 4. AFM images. Left: Matte coated papre. RMS roughness= 1400 nm.
Right: Gloss coated paper. RMS roughness=74 nm.

estimated to be under 100 nm. Mind the difference in scale bar.
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Figure 6. Effective length (filled symbols) and base diameter (unfilled
symbols) in micrometers (um) vs. \t (\'ms) for three separate droplets
impinged on gloss coated paper. The black lines are linear fits to the data.

The gloss coated paper porous surface is visualized by SEM in
Figure 5. The exact pore size and distribution cannot be
determined but the range of pore diameter can be estimated to be
below 100 nm. In Figure 6 the effective length and the droplet base
diameter of three droplets impinged on different spots are plotted
against the square root of time, together with linear curves fitted to
the effective length data. In the fitting process the first three
experimental points in each droplet sequence are excluded. For all
three droplets, the points at 0 ms and to some extent the ones at 0.4
ms diverge from the fitted curves. The total observed drying time
is similar for all droplets and measured to be 13-16 ms. The initial
spreading period (defined as the time during which the base
diameter reaches its maximum value) in all samples is lasting
about 1.2 ms after initial paper-droplet contact.
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Table 1: Surface topography done by AFM and chemical composition done by
XPS.

Surface chemical
Paper e .
Roughness composition in atomic
sample o
percentage [%]
RMS | , Peak to Peak o c Al Si
[nm] [nm]
Gloss | 7, 550 58 | 16 | 250 | -
coated
Matte | 4400 13,000 39 | 42| - | 140
coated

The chemical composition of the matte coated paper surface
determined by XPS (Table 1) reveals a significant content of
silicone atoms in the surface layer due to enrichment of silica gel
aggregates in the coating layer. This sample exhibits a rough
surface with rms roughness of 1400 nm and peak to peak value of
13,000 nm (Table 1, Figure 4 and Figure 7).

PR T R PR o B
Figure 7. SEM images of the matte coated paper. Two distinct pore
populations are seen: inter and intra-aggregate (see text for discussion). Mind
the difference in scale bar.

SEM images of the matte coated paper (Figure 7) reveal two
distinct pore populations: inter-aggregate and intra-aggregate. The
inter-aggregate pores occur as a consequence of the gaps between
the silica gel aggregates (Figure 7 left), while the intra-aggregate
pores are voids inside the aggregates themselves (Figure 7 right).
The difference in pore size between the two distinct pore
populations is estimated to be two orders of magnitude. The time
evolutions of the droplet base diameter and the effective length on
the matte coated paper are shown in Figure 8. No linear fitting is
done in this case, but a trend is seen in all droplets where the linear
coefficient describing the rate of change in the effective length
decreases after about 1.8-2.2 ms (Figure 8, inset) and at an
effective length of 6-11um. Total drying times observed on this
sample are between 30-100 ms, which is a significantly larger time
and larger variation than observed on the gloss coated paper (10-13
ms). The droplet initial spreading period (as defined above) is
similar to the one on the gloss coated paper, lasting about 1.2 ms
(Figure 8).
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Figure 8. Effective length (filled symbols) and base diameter (unfilled
symbols) in micrometers (um) vs. \/t (vVms) for three separate droplets
impinged on matte coated paper. The inset shows trend lines marking the two
regions displaying differences in linear coefficient of imbibition vs. V/t.

Discussion

The Initial droplet spreading period lasts about 1-2 ms on both the
matte and the gloss coated papers (Figure 6 and Figure 8), despite
the significant differences in surface chemistry and roughness of
the two (Table 1),

The linear curves in Figure 6 (gloss coated sample) suggest a
Lucas-Washburn type of imbibition, with a possible contribution
by diffusion processes arising from interactions between water and
molecular moieties in the coating layer (e.g. binder, surfactants,
slats). The reason behind the repeated divergence from the fitted
linear curve, by the first - and to some extent - by the second point
in each sequence remains to be explained.

The matte coated sample exhibits total drying times with a wider
span relative to the ones observed on the gloss coated paper (30-
100 ms relative to 10-13 ms, respectively), a consequence of the
much larger structural and most probably chemical heterogeneities
of the matte coated paper (Figure 5 and Figure 7). The trend of a
decrease in the linear coefficient describing the rate of change in
the effective length versus v/t (Figure 8) is particularly interesting.
This can be rationalized by the Lucas-Washburn equation (Eq. 2)
and taking into account the two distinct pore-populations
mentioned above, as well as the layered structure of the coating.
The Lucas —Washburn equation (Eq. 1) predicts a faster imbibition
into large pores than into small ones with the same surface energy.
In the matte coated sample the pore size difference between the
two pore populations is two orders of magnitude. Consequently, in
the initial few milliseconds most of the imbibition takes place in
the large inter-aggregate pores, and hardly any in the small intra-
aggregate pores. Later, a transition occur where imbibition is
taking place mainly in the small intra-aggregate pores. Two
scenarios can be the reason behind the latter transition: (1) The
liquid front has reached the end of the silica gel aggregate layer
and since most of the large pores are full imbibition takes place
mostly inside the small, intra-aggregate pores. (2) While the liquid
front advances, more and more small intra-aggregate pores are
engaged in the imbibition. At a certain point all the liquid is
consumed by imbibition taking place inside the small pores, thus
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arresting the imbibition in the large pores. Both scenarios are
suggested to result in the smaller linear coefficient describing the
change in effective length vs. Vt (Figure 8). Interestingly enough,
support for the second scenario can be found in the similarity
between the effective length associated with the decrease in linear
coefficient (6-11um) and the thickness of the silica gel aggregate
layer estimated by the aggregates size (about 1-15 pm, Figure 8)
and the measured average peak-to-peak value (13 pm, Table 1).

Conclusions

In this work imbibition rates of pL-sized droplets on coated inkjet
papers were measured and correlated with the coating layer
structure. The ability to distinguish between the different
imbibition events is enabled due to the combination of fast imaging
and the use of small droplets. It was found that imbibition into the
two discussed samples provides a linear relation between the
change in effective length and the square root of time, which
implies a Lucas-Washburn type of imbibition. In the case of the
gloss coated paper, only one linear coefficient is observed, while in
the case of the matte coated paper, two linear coefficients can be
distinguished. We suggest that the first linear coefficient arises due
to the dominating imbibition in the inter-aggregates pore
population at short time scales, and the second linear coefficient
arises due to imbibition in the smaller intra-aggregate pore
population that dominates at longer time scales.
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Appendix

Eq. 2 reads: hepr = ¢+ - V(O

TR(t)
Ry(?) the droplet base radius at time #, V(¢) the droplet volume at

where A is the effective length,
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time ¢, and C and V, are two terms discussed below. /. is
proportional to the difference between V;, and ¥(¢), and inversely
proportional to the droplet base area given by mRZ(t). In the case
where only one linear coefficient is observed (as on the gloss
coated paper, Figure 6) C=0 and V| is the initial experimental
volume at =0 (captured in the first frame). When two linear
coefficients are observed (matte coated paper, Figure 8), in the first
stage corresponding to the first linear coefficient, C=0, and Vj is
the first experimentally observed volume, i.e. Vy=V(t=0). At a time
1, the second stage starts, corresponding to the second linear
coefficient. Here V| is the volume observed at the start of the
second stage, i.e. Vo =V(t =t,), and C is an offset term equals
the effective length calculated at r=t, (start of the second stage) but
with Vy = V(t = 0) (the volume captured at /=0, the start of the
first stage). This procedure is justified by the assumption that the
second stage is dominated by imbibition in the small intra-
aggregate pores.
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