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Abstract 

  The use of carbon nanotube particle filled composite 
materials is gaining much attention across many industries, 
including the printing industry. While applications of such 
materials are being sought, development and testing of materials is 
underway. Characterization of the material’s properties using 
current techniques coupled with nano testing may be of great  
interest in understanding the physical properties of these 
materials. In general, carbon nanotube  particle applications for 
Non-Impact Printing may include charge/developer rolls and belts, 
and fusing system rolls and belts. The physical properties that 
nano particles impart to a material may significantly enhance 
materials over and above those currently using conventional 
additives to a base polymer. Of interest to non-impact printing 
material science are physical properties such as surface energy, 
electrical resistivity, thermal diffusivity, abrasion resistance, and 
compressive modulus. These material properties, and others, can 
be modified by the addition of nano particles additives to a base 
polymer. The resultant properties of the addition of multi-walled 
carbon nanotubes to a base polymer is presented using 
conventional and nano testing methodologies. 

In this study, conventional methods of physical properties 
testing ( hardness / compression set / static-stress relaxation, 
electrical resistivity), are conducted along with DMA, 
nanoDMATM, nanoindentation and nanoECRTM (electrical contact 
resistance)  methods.  Correlations of  nano  testing with 
conventional static physical properties testing have been presented 
in previous studies by the authors. Correlation of DMA and  
nanoDMATM  test methodologies of nano composite materials is 
novel, as well as the application of nanoECRTM  testing of carbon 
nanotube filled materials.  

Introduction 

Laser printers, and other electrophotographic image forming 
devices, use various rollers and belts that depend upon material 
properties to manage paper transport, toner transfer, and toner 
fixation. Electrostatic and thermal properties are managed in the 
toner transfer, transport, and fixing of the image by the physical 
properties of the materials used in the printer components. Of 
importance are the electrical and surface release properties of the 
composite materials, to hold and release toner particles as desired, 
as well as to dissipate undesirable electrostatic charges. As the 
paper passes between a fuser and pressure roller, thermal and 
electrical properties are as well considered for optimal toner 
management and image quality.  
 

The recent commercialization of carbon nanotubes has 
prompted this investigation into using carbon nanotubes as an 
additive to a polymer to confer desired physical properties such as 
electrical conductivity. It has been noted in the research 
literature1,2,3 that small amounts of carbon nanotubes increase the 
electrical conductivity significantly. For the purpose of this study, 
loadings, less than 10% of carbon nanotubes were added to rubber 
polymers of FKM, EPDM and silicone. Specifically for this study, 
very low loadings of  multi-walled carbon nanotubes, less than 2% 
by weight, were added to a liquid silicone rubber and the physical 
properties measured with conventional and nano testing 
methodologies.  
 

Typically properties measured include: 
 

1. Mechanical strength 
a. Tensile Strength [T.S. (psi)] 
b. Elongation at Break [EB (%)] 
c. Hardness 
d. Modulus 

2. Surface Energy for toner release 
3. Thermal Conductivity/Diffusivity 
4. Electrical Conductivity 
5. Abrasion Resistance 
6. Resistance to oils or ozone 
7. Dynamic Mechanical Analysis 

  a. Storage Modulus 
  b. Loss Modulus 
  c. Tan Delta 
 

Conventional testing measurement techniques, and 
Nanomechanical and Nanoelectrical testing techniques, affords the 
ability to evaluate material properties over a wide spectrum. 
Measurement techniques employed may be:   
 
 

1. Rheology 
2. Dynamic Mechanical Analysis (DMA) 
3. Thermal Gravimetric Analysis (TGA) 
4. Differential Scanning Calorimetry (DSC) 
5. NanoDMA 
6. NanoECR (Electrical Contact Resistance) 

 
This study employed a number of conventional and nano 

measurement techniques to evaluate carbon nanotube silicone 
rubber composites. Correlations between macro, micro and nano 
testing techniques were observed.  
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Experiment 

Multi-walled carbon nanotubes were added to a liquid silicone 
rubber in the ratio of 0.1% through 2% by weight. The premise of 
the study was that that the carbon nanotube particles might impart 
some interesting properties, such as electrical conductivity at low 
loadings. The control elastomer was a 35 Shore A Platinum 
catalyzed, addition cured liquid silicone rubber. Multi-walled 
carbon nanotube loadings, provided by Hyperion Catalysts, 
Boston, MA, were set at 0.5%, 1% and 2% by weight (w/w). 
Multi-walled carbon nanotubes were added into each part A & B, 
of the two part LIM material, by Hyperion Catalysts. Part A and 
Part B materials were then mixed using a FlackTech® centrifugal 
speed mixer DAC-150-FVZ/K and shear mixing. The 
Rheology/Curing characteristics of each batch were measured 
using a moving die Rheometer (MDR2000/Alpha Technologies) at 
150°C. Test slabs and buttons were molded for test and evaluation. 
All materials were post-cured for 4 hours at 200°C. Measurement 
of physical properties were made using both macro and nano 
techniques. Atomic Force Microscopy (AFM) and optical 
microscopy were also used to further understand the nature of the 
CNT rubber composite matrix. 

Conventional methods of physical property measurements 
were carried out on a Shimadzu Rubber Tensile tester (model 
AGS-H; Autograph) for the determination of Tensile Strength 
(TS), Elongation at Break (EB%). Compression set was also 
measured according to ASTM D395-97. Dynamic Mechanical 
Analysis was carried out by Akron Research & Development Labs 
using a Visco Analyzer 2000 DMA150 in compression mode. 
Thermal properties were measure using a TA Instruments 2950 
TGA and a TA Instruments 2010 Differential Scanning 
Calorimetry. Thermal conductivity was measured by a guarded 
heat flow method.  Electrical resistivity was measured using a Trek 
Model 152 Resistance Meter, with 152P-CR probe. 

Nanomechanical measurements were performed on a Hysitron 
TI 900 TriboIndenter TM by Hysitron, Inc., Minneapolis, MN and 
included the following: 
 
1. Nanoindentation for hardness and reduced modulus 
measurement of the sample elastomer surfaces. 
2. NanoDMA for the measurement of Storage Modulus (E′) and 
Loss Modulus (E″) as a function of frequency. 
3. NanoECR for the measurement of electrical contact resistance 
4. AFM and optical microscopy of the elastomer samples. 
 

Results and Discussion 

The molded samples analyzed were made of a base liquid 
silicone rubber and the base rubber with loadings, by weight, of 
0.5%, 1% and 2% multi-walled carbon nanotubes. The results 
show very significant changes in the electrical conductivity with 
very little changes in other physical properties, indicating, that in a 
liquid silicone, there is no diluent behavior induced with these 
additions.  

Physical properties of the base silicone and CNT composites 
are given in Table 1. Significantly, Table 1 shows that electrical 
resistivity, measured in Ohm.sq, changed dramatically from 1013 to 

below 102, (the resolution limit of equipment) with a 2% loading 
while maintaining hardness, elongation and tensile properties of 
the original base material. In addition, important properties such as 
compression set, while changed slightly, were well within an 
acceptable range for printer applications. Specifically, a loading of 
0.5% CNT showed virtually no change in the physical properties 
while a dramatic change in electrical conductivity to a resistivity 
value of 104 Ohm. sq. Thus loadings of 0.5% or less can be added 
to a base silicone to achieve a desired electrical resistivity value 
without diluting other desired physical properties. 

 

Parameter Base 
LIM 

0.5% 
CNT 

1% 
CNT 

2%
CNT 

Max. Torque, 
lb-in 5.73 6.01 6.61 9.14 

TC90, sec 17 13 20 15 
Hardness 
Shore A 38 40 43 43 

Tensile, psi 365 335 392 449 
Elongation, 

% 256 227 230 265 

Modulus, psi 168 160 197 220 
Tear, ppi 30.4 28.6 41.0 52.0 
Specific 
Gravity 1.25 1.31 1.31 1.29 

Compression
set, % (22hrs 

@ 350F) 
2.0 3.2 7.0 12.5 

Volume 
Change in 

silicone oil, 
%(22hrs @ 

350F) 

34.0 43.0 35.0 35.0 

Electrical 
Resistivity 

Ohm/sq 
10^13 5x10^4 1.3x10^3 

<10^2 
Out of 
range 

 

Table 1. Physical Properties of CNT composite samples 

Figure 1 plots the electrical resistivity values of the carbon 
nanotube composites. For the purpose of expanding the electrical 
properties measurement, samples of carbon nanotube loadings of 
0.12% and 0.25% were also tested. It is clearly seen how the 
resistivity drops exponentially with loadings from 0.12% to 2%. 
Thus small loadings of multi-walled carbon nanotubes can infer 
electrical properties which may be of interest for toner transfer 
rollers and belts, as well as use in components requiring 
electrostatic properties, such as transport and fusing members.  
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Figure 1. Surface Electrical Resistivity. Ohm/sq 

Nano mechanical tests were employed on samples with 0%, 
0.5%, 1% and 2% CNT loadings, to characterize material 
properties at the micron levels. Quasi-static tests were used to 
reveal hardness and reduced modulus. NanoECR 4 was used to 
characterize the electrical properties of each sample. NanoDMATM  
frequency sweep tests were performed on each sample to 
characterize the dynamic properties as a function of frequency. 

Figure 2 is a nanoECRTM plot of the average current measured 
in each of the 0.5%, 1% and 2% CNT filled samples. The nano 
electrical conductivity, measured in micro amphers shows the 
exponential increase in electrical conductivity with small additions 
of carbon nanotubes. The nanoECRTM measurements were 
conducted at several points in a 10 micron region using a boron 
doped diamond Berkovich indenter probe. During each indent, a 
constant voltage of 7V was applied to the sample, with a peak 
depth of 4 microns. Each displacement consisted of a 5 second 
approach to a depth of 4 microns, a hold for 5 seconds, and a 5 
second withdraw. 

Figure 3 is a TroboAnalysisTM plot of force and current versus 
time of the nanoECR measurements of Figure 2. The results shows 
increasing stiffness, measured in micro Newtons, of the samples 
along with the electrically conductivity, measured in micron 
amperes. Interestingly, the current remained constant over the 5 
second hold period. The control, no nanotubes, is at the base of 
each plot. The 0.5%, 1% and 2% nanotube composite electrical 
response rises logarithmically in sequence. 

Thermal properties of the composites were observed using 
Differential Scanning Calorimetry (DSC), Thermal Gravimetric 
Analysis (TGA), and thermal conductivity. Thermal conductivity 
measurements showed no significant measurable change. TGA and 
DSC analysis showed only small shifts in the glass transition or 
decomposition. Figures 4 and 5 show the TGA and DSC results. 
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Figure 2. NanoECR, micro amperes 

  

Figure 3.  TriboAnalysisTM plots of force and current versus time 
from the 7 volts, 4 µm displacement-controlled indents on each 
sample.  Note that the y-axis of the current versus time plot is 
logarithmic in scale. The control, no CNT, is at the base of each 
plot. The 0.5%, 1% and 2% CNT filled composites rise in 
sequence. 
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Figure 4. TGA plot of control and CNT composites 

 

 

 

 

 

 

 

 

Figure 5. DSC plot of control and CNT composites 

Of interest to the study is the characterization of the 
viscoelastic properties of each of the carbon nanotube composites 
as compared to the base material and to each other. In addition of 
interest to the study is the relationship or correlation between 
conventional DMA and nanoDMA testing methods. Dynamic 
Mechanical Analysis (DMA) is frequently used to measure the 
stress and strain over a wide range of frequency.  The authors, in a 
previous Non Impact Printing study5, reported nanoDMA results 
on the same base material of this study, but with addition of alpha 
alumina nanoparticles. The nanoDMA results reported here for the 
carbon nanotube silicone composite are combined with 
conventional DMA analysis over the same frequency range.  The 
results demonstrate a direct correlation between the DMA and the 
nanoDMA measurement methodology for a soft material, 
providing a new insight into applications of nanoDMA. 
Conventional and nano Storage and Loss Modulus of each of the 
samples are combined to show how the DMA and nanoDMA 
tracked together with the same relationship. The frequency sweep 
from 20 to 200 hertz showed very uniform results with both 
measurement methods. Figures 5 & 6 shows the relationship 
between the DMA and nanoDMA measurements over those 
frequencies. Figure 7 is the Tan Delta plot (ratio between Storage 
and Loss Modulus), showing remarkable correlation between the 
DMA and nanoDMA measurements.  

 

Figure 6. DMA and NanoDMA Storage Modulus of control and CNT 
composites 

 

Figure 7. DMA & NanoDMA Loss Modulus of control and CNT composites 

 

Figure 8. DMA & NanoDMA Tan Delta of CNT composites 
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Conclusions 

The addition of very small amounts of multi-walled carbon 
nanotubes into a liquid silicone rubber has been shown to impart 
significant changes in the electrical conductivity without changing 
the physical properties of the material overall. This is supported by 
physical and dynamic property testing utilizing conventional and 
nano measurement methods. Results were obtained that 
demonstrate the correlation of DMA and nanoDMA testing for a 
soft elastomer. In addition, a novel measurement of nano electrical 
contact resistance was applied to a soft elastomer. 
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