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Abstract 
The "Xerox Particle Simulation Environment" (XPSE) 

computer codes have been extended to enable three-dimensional 

fluid-flow simulations based on the Smoothed-Particle 

Hydrodynamic (SPH) technique. Individual ink drops (e.g., from 

an inkjet print head) or molten toner particles are discretized into 

several thousand small fluid elements. Each element samples 

localized material properties, such as volume mass density and 

temperature, averaged over a small region of space. Forces are 

computed on each element, which are then moved in accordance 

with the laws of Newtonian mechanics. The result is a time-

dependent three-dimensional simulation of fluid flow including 

free-surface effects, self-consistent temperature and viscosity, and 

diffusion into porous media (e.g., paper). Multiple material types, 

such as different colored inks or toners, can be handled within the 

same simulation. Examples are drawn from early numerical 

experiments relating to the microscopic flow of gel-like materials. 

Introduction 
Using the Xerox Particle Simulation Environment (XPSE) [1-

3], we investigate how mechanical and material properties of semi-

fluid materials affect image quality in both electrographic and 

inkjet marking engines. For this, physically realistic simulations of 

microscopic fluid flow have proved invaluable. 

In the electrographic case, we are interested in the fusing 

stage of the process. Here, solid plastic toner particles are heated 

and pressed onto a paper’s surface using one or more cylindrical 

rolls. In addition to fusing to the paper, the semi-fluid particles 

tend to flow together with limited mixing. The subtle dynamics of 

this process is of particular interest when color images are being 

formed. In the case of inkjet printers, we are able to simulate the 

detailed mechanics of how solid-wax and gel inks flow and 

solidify onto (and into) paper as the material cools. 

A brief overview of XPSE and the Smoothed-Particle 

Hydrodynamics method is presented. Realistic material properties 

and geometries (e.g., particle and drop volumes) are used by the 

simulation code. The ultimate goal of these studies is to understand 

and improve upon the visual quality of printed images. 

Overview of XPSE 
XPSE is a set of C++ libraries and computer programs that 

were originally designed to enable the simulation of xerographic 

subsystems; such as erasure, charging, exposure, development, 

transfer, and fusing. The underlying code uses the particle-in-cell 

technique [4] to model individual toner particles in three spatial 

dimensions and time. Appropriate forces are calculated which 

describe the effects of collisions with other particles and geometric 

objects. The software architecture is fully object-orientated and can 

be thought of as an “operating system for particles”. As the 

simulation time progresses, events (e.g., particle-to-particle 

collisions) are detected, posted, and subsequently processed by 

registered event handlers (e.g., the force between two colliding 

particles is computed). 

XPSE provides a small three-dimensional CAD-like class 

library where all geometric objects (e.g., blocks, plates, cylinders, 

and spheres) are “physically active”. Moving donor and receiver 

surfaces are available for a number of development subsystem 

models. Simulations of transfer and fusing are evolving to include 

detailed air breakdown effects and pressure-driven flow of melted 

toner layers on paper. Many aspects of toner, carrier bead, and ion 

particles can be represented, including: stochastic size and charge 

distributions, inter-particle conduction, magnetic interactions (i.e., 

for simulating the formation of magnetic brushes), particle-particle 

cohesion, and particle-boundary adhesion. The particle cohesion 

and adhesion models support a variety of force components such 

as: hard-core collisions, complex short-range forces due to charged 

surface patches and Van der Waals effects, induced electrostatic 

and magnetic polarization, and friction. Long-range electrostatic 

fields are solved on finite-element grids and blended with shorter-

range forces that are calculated within the event-handler functions.  

By assembling XPSE components (e.g., finite-element grids, 

collections of toner particles, geometric objects, numerical field-

solvers, etc.), it is possible to create digital simulators that emulate 

the behavior of specific pieces of hardware. These constructs may 

be thought of as virtual fixtures, and can be used by scientists and 

engineers to supplement experimentation on conventional physical 

fixtures. XPSE is suitable for problems where the number of cells 

and particles are on the order of 103 to 106. Run times vary widely 

with the problem being solved, but can range from minutes to tens 

of CPU hours on a modern PC/Linux workstation. 

The focus of this paper is the extension of XPSE into the 

realm of fluid mechanics; specifically for the purpose of studying 

molten toner and gel-like ink flows on and into paper and similar 

substrates. 

Smoothed Particle Hydrodynamics 
Fluid flow is generally described by the Navier-Stokes 

equations or variations thereof [5, 6]. The solution of these 

coupled non-linear systems is challenging but well understood, 

primarily due to efforts of the aerospace industry over the past 

sixty years. Our interest is somewhat different than most aerospace 

problems, in that we wish to study rather small volumes of dense 

viscous fluid moving though air and along surfaces at low 

velocities. This is inherently a free-surface problem where the 

boundary between the fluid, air, and surface is part of the solution, 

rather than an imposed boundary condition. 

Smoothed Particle Hydrodynamics (SPH) [7] is a numerical 

technique somewhat related to the Finite-Element Method  (FEM) 

in that a set of discrete points sample physical quantities which are 

then formally interpreted using a set of basis functions. For 

convenience, we call the XPSE particle that corresponds to a 
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sampling point a floxel (i.e., short for “fluid voxel”). By assuming 

the solution is defined by a sufficiently large set of floxels, one can 

formulate a set of equations that solve for the location of each 

particle based on a least-energy minimization principle, subject to 

a number of other physical constraints. However, unlike more 

conventional grid and mesh-based techniques, the relationship 

between floxels is not governed by a fixed topology. Unlike the 

case of the finite-element method, SPH interpolation functions 

usually encompass many sampling points; including first, second, 

and third nearest-neighbors. The general class of related numerical 

techniques is sometimes referred to as mesh-free methods. 

The actual implementation of an SPH code looks much like a 

conventional particle code in that, at each discrete time step, a 

force is computed at the location of each floxel, and that is 

converted to an acceleration that is subsequently integrated into a 

new velocity and position vector. Thus the floxels move in time, 

carrying along all interpolated fluid properties. Where floxels 

don’t exist, the fluid does not exist; thus the free-surface boundary 

problem is solved without undue effort. Furthermore, if floxels 

carry additional information such as material properties (e.g., 

yellow vs. magenta ink), multi-phase flows with mixing are also 

accommodated in a very natural fashion. 

One might note that SPH superficially resembles discrete-

particulate flow (e.g., powder flow) or the Discrete Element 

Method (DEM) [8], both of which have been used to model fluids. 

However SPH uses a variational Lagrangian formulation that the 

authors consider more appropriate for continuous systems. As a 

practical matter, our problem set generally involves viscous 

materials (i.e., with kinematic viscosities on the order of 10 to 

2000 cP, depending on the local operating temperature of the 

fluid) at relatively low speeds (i.e., less than 3 m/s). Although 

turbulent flows are not expected, some mixing of different 

materials can occur. Other researchers have postulated optimized 

SPH algorithms for similar conditions [9]. XPSE implements SPH 

using the formulation of Monaghan [10] with the following 

important modifications: 

• Floxels, which are effectively a type of XPSE particle, are 

assigned a fixed “hard-core size” that is determined to be 

consistent with the average density of the fluid. An efficient 

hard-core collision detection algorithm is used to prevent the 

sample points from approaching each other closer than this 

distance. Thus our SPH formulation, which would ordinarily 

only accommodate compressible flows, now imposes a 

constraint consistent with incompressible materials. It does 

this without the undue burden of having to implement an 

extremely high elastic modulus or very small time steps. If 

desired, this constraint can be “relaxed” to allow for moderate 

amounts of elastic compression, as seen in realistic materials. 

• When floxels encounter regions designated as porous media 

(i.e., paper), the underlying equations implement simple 

diffusion rather than Navier-Stokes. An empirical diffusion 

coefficient is assigned to this region, based on measurable 

substrate properties. 

• Each floxel carries its own value of temperature. As floxels 

collide with each other and fixed boundaries, a thermal 

energy flux is calculated that is used to update the 

temperature of each floxel at each time step during the 

simulation. In this way, the microscopic temperature of the 

fluid is computed as a function of time and position. The local 

temperature directly influences the local viscosity of the fluid 

via a simple model or look-up table. This in turn feeds back 

into the equations of motion. Watkins et. al. [11] provides 

improved mechanisms for treating viscosity in SPH 

formulations. These ideas are not presently being used, but 

may be incorporated into future versions of XPSE. 

Parallelization of XPSE’s Particle Code 
As might be expected from the above description of the SPH 

method, a great deal of computation must be done in order to study 

or solve realistic problems in an engineering environment. 

Although an individual toner particle or ink drop might “only” 

require O(5000) floxels, we would like to simulate small solid 

patches, line edges, and half-tone dot patterns. Previous work with 

toner development simulations has indicated that being able to 

simulate a square millimeter area of substrate is sufficient for our 

needs. Even simulating a square millimeter requires a lot of 

particles and CPU time (e.g., millions of particles and hours of 

CPU time). 

XPSE uses a chaining-mesh [4] in order to calculate particle-

particle collisions, which effectively makes it’s algorithm scale 

close to O(N) for particles and O(T) for time. All particle-force and 

advection calculations have been parallelized using threading, 

which is suitable for modern shared-memory processors with 

multiple cores (e.g., Intel’s Nehalem Core series, such as the i7-

920).  The actual efficiency of our parallel code on large SPH 

problems approaches 90%; that is we observer a real speedup of 

approximately 3.5 times when running 4 to 8 hyperthreads on a 4-

core i7-920 processor. 

Our latest research effort focuses on using a GPU card, such 

as those produced by nVidia Corporation [12], for performing 

most the particle-force and advection calculations that occur 

during an SPH simulation. We are using the CUDA [13] 

programming environment for this purpose. Preliminary results 

indicate that speedups of O(100) are possible over a single Intel 

processor; depending on the exact hardware and software 

optimizations used. Although more work is required, this 

technique looks very promising for enabling large-scale, physically 

realistic, imaging simulations with a relatively modest investment 

in computer hardware. 

Simulation Results 
 Our simulations begin either with solid toner particles on 

paper, or with ink drops in mid flight (see figure 1). In either case, 

a toner particle or ink drop is discretized into approximately five-

thousand floxels, which are arranged as a three-dimensional hex-

close packed sphere. Multiple drops can be in flight as a function 

of time, thus a pattern can be laid down and tracked in a realistic 

manner. The exact time step that is used is problem dependent, but 

it is typically on the order of one microsecond. A simulation may 

run for ten’s of milliseconds – and is usually terminated when the 

flow rate becomes sufficiently low so that little of interest is 

happening. In all cases, the temperature and viscosity of the fluid is 

continuously changing; often in a very complex manner. 

 

NIP26 and Digital Fabrication 2010     Technical Program and Proceedings 467



 

 

Figure 1: This image shows a set of inkjet drops being ejected from a 

single nozzle. Although each drop starts with a very long tail, it soon 

breaks off and becomes a near-perfect sphere due to its high surface 

tension. (photograph courtesy of Jing Zhou) 

Case 1: Large Blob of Cooling Gel 
In order to calibrate the simulation codes and related material 

properties, our initial studies concentrate on rather large “blobs” of 

gel-like material impacting a hard surface. XPSE can output an 

enormous amount of generated data, such as the complete state of 

every single “particle” at every time step. In practice, a small 

portion of the simulation data is saved to a file and visualized as an 

animation. Unfortunately, only very few snapshots of these 

animations can be shown in this paper. 

Figure 2 shows a sequence of images for a simulated 

centimeter-sized blob of gel impacting a hard non-wettable 

surface. Each picture was captured at a different time in the 

simulation. The color represents temperature; with red 

corresponding to a high temperature and blue to a lower 

temperature. The local viscosity of the material is determined by 

look-up from an experimentally measured viscosity-temperature 

table. Note that each small “particle” in an image is representative 

of a floxel. This is purely an artifact of XPSE’s visualization 

program, and the simulated fluid is mathematically smooth and 

continuous (i.e., a floxel is not a particle of fluid!). Of particular 

interest is the rate of cooling of the drop and its final shape after it 

solidifies. If run long enough, the temperature of the blob 

approaches the temperature of the substrate. Unlike some other 

fluid-simulation codes, the contact angle is an output for us, not an 

input parameter. It is determined purely by the bulk properties of 

the material. 

Figure 2: These three images show how a large (~1 cm) blob of gel-like 

material cools and solidified on contact with a cold metallic plate. The 

left-most image is the starting condition of a hot blob with low viscosity. It 

is dropped onto the plate with zero initial velocity, but it falls under 

gravity gaining kinetic energy. The middle image shows the blob at some 

later time. It is highly distorted as it is vibrating while it dissipates kinetic 

energy. The final image is the blob once it has frozen into place. 

Case 2: Small Blob of Gel on a Wettable Surface 
Figure 3 shows a similar sequence of images for a smaller 

millimeter-sized blob of gel impacting a hard wettable surface. As 

before, each picture was captured at a different time in the 

simulation process. The color scale, and hence local temperature, 

is similar to that in case 1. As the volume of the drop is small, it 

gains relatively little kinetic energy from its fall, so any vibrations 

are quickly dampened. As the drop spreads into a thing film, it 

reaches a uniform temperature as it freezes. We can adjust the 

degree that a material wets a surface by controlling how the local 

force between floxel particles and the surface. Roughly, if floxels 

are attracted to a surface, it is wettable. If they are repelled from a 

surface, it is not. 

Figure 3: These three images show a smaller (~1 mm) blob of gel-like 

material solidifying on a hard wettable surface. As in figure 2, the time 

sequence runs from left-to-right. 

Case 3: Small Blob of Gel Hitting a Moving Surface 
Figure 4 shows a sequence of images for a millimeter-sized 

blob of gel impacting a moving surface. The drop has an initial 

downward speed of approximately 0.1 m/s, and the surface is 

moving from left to right at about 0.2 m/s. As the drop hits the 

surface, friction causes it to pick up a lateral component of 

momentum. As it cools and solidifies, it acquires an interesting 

“peanut shape” [14]. Note that this is due to conservation of 

angular momentum. It is unlikely to occur to any significant extent 

in a normal-sized inkjet drop, which would be much smaller (e.g., 

microns in diameter). 

Figure 4: These three images show a small (~1 mm) blob of gel-like 

material impacting a moving surface. As before, the time sequence runs 

from left-to-right. 

Case 4: Gel Diffusing into Paper 
Figure 5 shows a sequence of images for a millimeter-sized 

blob of gel diffusing into a porous substrate. The drop has an 

initial downward speed of approximately 0.1 m/s. As the drop hits 

the surface, floxels are allowed to penetrate it’s upper boundary. 

The equations of motion change from Navier-Stokes to simple 

linear diffusion. Given enough time and a suitably large diffusion 

coefficient, floxels in the paper will move out and down into the 

substrate. In the current implementation, the temperature of the 

substrate does not change, even though thermal energy from the 
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hot gel should cause it to (locally) rise. We hope to address this 

issue in the future. 

Figure 5: These three images show a small (~1 mm) blob of gel-like 

material impacting a moving surface. As before, the time sequence runs 

from left-to-right. 

Case 5: Coalescence of Moving Drops 
Figure 6 shows a sequence of images for three, millimeter-

sized blobs of gel hitting a moving substrate while impacting with 

each other. The timing of the simulation is such that later drops hit 

earlier drops, and coalesce into a single large entity. Although the 

material properties of each drop is identical (which it need not 

be!), they are colored differently to show how mixing occurs. As 

the surface is non-wettable, and due to a somewhat random choice 

of the elastic properties of the gel, these drops tended to bounce as 

they hit the surface. In this simulation the temperature, and thus 

viscosity, of the material was held constant. 

 

Figure 6: This sequence of images show three small (~1 mm) blobs of gel-

like material impacting a moving surface and each other. The time 

sequence runs from left-to-right and top-to-bottom. 

Conclusion 
 Through the use of physically realistic computer simulations, 

we can gain insight into the microscopic flow patterns of both 

molten toner and gel-like ink on porous surfaces. Although still in 

an early stage of development we believe that such techniques can 

supplement physical experimentation and aid in the optimization 

of electrographic and inkjet printing engines. 
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