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Abstract

For many color printing systems, printer calibration is often
utilized to return the printer to a known state to ensure consis-
tent color output. In particular, the key visual response of “color
balance” is often controlled by the calibration state return. In-
put color signal noise, generated from the printing system natural
variation when printing the calibration target, affects the accu-
racy and robustness of the calibration outcome. Noise manage-
ment techniques for managing input color signal noise prior to
system calibration are often absent or rely on ad hoc analysis and
are usually not based on the return of a well developed printer
response that has been extracted from measured signal using ad-
vanced noise management methods. This paper describes Part I
of an overall method for developing a robust noise management
system for printer calibration. In this Part I, the specific develop-
ment of a high resolution, noise free representation of the printer
system state, as defined hy quantitative metrics relative to the raw
input data is defined and developed.

Introduction

Calibration is a vital step in color workflow and is performed
regularly to compensate for device variation in color reproduction
[1]. Digital color printing systems are calibrated regularly to re-
turn the system to a known state [2]. User calibration for color
printing systems normally consists of three steps: 1) print a pre-
determined calibration target patch set utilizing the target printing
system. 2) measure the printed calibration target patches and 3)
use the measurement data to generate a tone reproduction curve
(TRC) that is applied to the printing system’s color workflow to
return the system to a known, desireable, and repeatable state.
During the printing of the calibration target in the first step, inher-
ent system noise is generated by the printing system and becomes
part of the measurement in step 2. The inherent system noise
affects the robustness of the calibration by obscuring the real sys-
tem state with natural variation. The absence of high precision
detection of the underlying system state with high confidence of-
ten results in inconsistent color output for the same print job even
after calibration has been performed.

In this Part I, we propose a method to obtain a high resolu-
tion, high confidence, printer system state representing a noise
free printer. First we describe the design of the calibration target
that minimize spatial and temporal variation. Then we describe
the proposed noise management method and the metrics we used
to obtain optimal parameters: number of filtering iterations on the
measurement data. We demonstrate the results of the proposed
iterative noise management method the Results Section.
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Figure 1. Randomized Calibration Target Containing 256 Values for Each
Separation

Separation Based Calibration Target

In order to design customer based data acquisition methods,
where a small number of patches are acquired and processed to
return the printer to a known state, a method of defining a high
resolution printer state, essentially noise free, is needed. In this
section, we construct a target, with standard printing 8.5 x 11
paper, that captures all 8 hits (0 to 255) of data from randomly
located patches within two pages. A common color printing sys-
tem has four processing colorants: cyan (C), magenta (M), yellow
(Y) and black (K) and each color printed on substrate is a com-
bination of C, M, Y, and K. In this paper we limit the number of
process colorants to just the preceding four. Capturing all 8 Bits,
randomly in the spatial domain, requires 1024 patches. In color
printing workflow, we use (¢ m y k) to represent any color pro-
duced on the printing system using the four process colorant. The
range of each channel is from 0 to 255. The bit value of 0 means
no colorant is placed on the substrate and 255 means maximum
amount of colorant is allowed by the system.

For each patch in a separation based calibration target, only
one channel is non-zero and there are 256 patches for each sepa-
ration. The (¢ m y k) values for the dth patch in the ith separation
can bhe described as

(Cmyk):(d*lu(;) d*l(j]\,[) d*l(jy) d*l(jK)) (1)

where 1, ) =1 when p = g and 0 otherwise, i € {C M Y K}
and 0 < d < 255.

All printing systems have spatial variability within the page
and temporal variability from one printed page to the next. To
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reduce variation of these kinds, patches in the data capture target
were randomized spatially and multiple spatially randomized ver-
sions were created to capture temporal variability. To randomize
the patch location for all four separations, a linear list of numbers
from 0-1024 was generated and then randomized using a random
number generator so that the calibration patches were placed ran-
domly on the target pages. The correspondence between the linear
list and randomized result was stored as the randomization key
and is used to re-order the measurement data after printing and
measuring.

Xrite Color Port software and an Xrite DTP-70 spectropho-
tometer were utilized in conjunction with the randomization algo-
rithm to create the calibration targets, with randomly placed dig-
ital count values, for each separation. A two page, 8.5x11 inch,
DTP-70 target is shown in Figure 2.

Figure 2. Randomized Calibration Target Containing 256 Values for Each
Separation

Optimal Method to Reduce System Noise in
Calibration Measurements

Spatial and Temporal Averaging to Reduce Noise

Multiple randomized calibration targets were generated us-
ing the method described, and printed using a xerographic color
printing system, and then measured by DTP-70. The re-ordered
measurements are converted to AE,, from paper and shown in
Figure 3(a). Large amount of noise is observed in the raw mea-
surement. For any patch, its AE,;, value is defined as AE,, =
[|mpaper — Mparen||, where mpaper = CIELAB measurement of
the paper white and m,;c; = CIELAB measurement of the patch
of interest. As shown in Figure 3(b), the averaging over multi-
ple calibration targets reduces some system noise, however, the
residual noise in the averaged measurement data is still signifi-
cant. Therefore, random sub-sampling of any of the post-averaged
color separations contains significant noise, relative to signal, and
calibration results will be affected by that noise. Hence, averaging
even as many as five randomized targets is shown to be a limited
method of reducing noise, and, from that result, it is clear that a
method to remove the remaining noise is needed.
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Figure 3. (a) One Measurement Data Set (b) One Measurement Data Set
Compared to Average of Five Data Sets for Cyan Separation

Filter Design

Since the printer state separation functions are not known a-
priori, and, are not simple polynomials, a function based fit for
noise removal was rejected. Methods from time series smooth-
ing, utilized in process control applications [3], were tested and
adopted. From standard time series filtering, a very simple low
pass filter (2) is proposed for each separation of the averaged mea-
surement.

Y[d] = ayx(d— 1] + apx|d] + azx[d + 1] B

where d is the index of the measurement data for one separation
that also corresponds to the digital value of the patch in (1). Since
the averaged signal is the only reference available that can be uti-
lized with very high confidence, that signal is treated as the input
signal.

The input signal is corrupted with noise from the printing
system. Hence, a method and metrics are derived to remove the
noise while insuring the maintenance of the underlying printer re-
sponse. In this endeavor, recognition that the original input data
is the reference is of critical importance. Noise reduction meth-
ods and metrics derived must make recognition of the raw signal
as reference. A version of the above filter is common to stream-
ing time series data. After some testing, and examination of fre-
quency domain response, a moving average filter with coefficients
a1 =03 ap =04, and a3 = 0 3 was selected.

Iterative Filtering on Calibration Measurements

While offering reasonable print quality, xerographic methods
of placing C, M, Y, and K on a printed page are complex and also
incur variation and noise in the resultant AE,;, measurements. Ink
based methods of printing also have natural variation. Removing
noise is critical to expose the underlying printer response, but, ex-
cessive filtering on the measurement data can destroy the printer
response. Hence, three metrics were developed to track both the
progress of noise reduction and signal preservation during noise
removal from the original raw high resolution measurement data:

1) The cumulative root mean square error of the filtered sig-
nal relative to that of the unfiltered signal,

2) a removed noise function defined as the difference be-
tween the smoothed patch of a given iteration relative to the unfil-
tered patch at the same bit count,

3) the second derivative of the cumulative root mean square
error.

Based on these metrics a process of filtering the data which
removes the noise while minimizing the cumulative error rela-
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tive to the original data was developed. In practice, the second
derivative of the cumulative root mean square error describes that
point of departure where cumulative error, between smoothed sig-
nal and original data, begins more rapid growth. At this point, the
removed noise function is well populated with zero mean. Hence,
the inflection point metric, number 2 above, for any input data, de-
fines the number of smoothing iterations chosen to define a noise
free signal. For cyan separation, the second derivative of the cu-
mulative noise is shown in Figure 4.
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Figure 4. Second Derivative Cumulative Noise vs Number of Iterations for
Cyan Separation

It is important to note that the removed noise function must
maintain a zero mean value. This insures that only random noise
has been removed and that offset associated with signal degrada-
tion not be present. If signal begins to be removed to the residual
noise function, then, that appears as the onset of non-zero mean
value. As noted, we find that the inflection point of the cumulative
root mean square error reliably represents that location where es-
sentially all random variation has been removed from signal while
maintaining the original signal.

For any separation, we define the removed noise for the jth
iteration for the dth patch as

ijj[d] = AEab j[d] - AEabO[d] (3)

where j=123 N, AE,; represents the averaged measure-
ment data without any filtering, and AE,, ;[d] is obtained by fil-
tering AE,, ;_1[d] with filter described in (2). Cumulative noise
of the jth iteration is:

CRN[j| =Y \/(RNj[d])2 @
d

Two conditions need to be satisfied when the optimal number of
iteration is reached: 1) E[RN[d]] =0and 2) CRN'[j] =0, where
E|-] is the expected value with respect to d and CRN'[}] is the
second derivative of CRN[ j] with respect to j. The minimal num-
ber of iterations j that satisfies both of the ahove conditions is the
optimal number of iterations that we are searching for.

Results

Five randomized calibration targets were generated and
printed using a color xerographic printing system. The printed
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targets were measured using DTP20 and randomized data were
re-ordered to correspond to 0-255 input level. The average was
taken using four sets of data and optimal numbers of iterations for
each separation were derived from the average using the above
proposed method. The optimal numbers of iterations were applied
to the fifth data set to reduce the noise in the fifth measurement
data set.

Filtering procedure follows the following protocol. First,
1000 iterations of smoothing with the previously noted filter and
metrics are performed. For these data and this filter, this always
results in exceeding the amount of filtering necessary to move be-
yond the inflection point of the cumulative root mean square error
between smoothed signal and original high resolution data. Fol-
lowing the generation of statistical data on each smoothing itera-
tion, a numerical search locates the point where both conditions
E[RN/[d]] =0 and CRN'[}] = 0 are satisfied.

The inflection point is defined as the location where the sec-
ond derivative of the signal change signs. For cyan separation, the
inflection point in Figure 4 is 12 and E[RN—3;[d]] of condition 1
is 0.0061, a very small value that can be treated as zero. Utilizing
the inflection point as the location of optimal smoothing the aver-
aged data set that represents the average of 4 measurements and
the optimally smoothed AE,, curves can now be constructed and
compared. The optimally filtered AE,, curve for cyan is shown
below in Figure 5 with the averaged data from the 4 input targets.
The same search can be applied to other separations to obtain the
optimal number of iterations for each separation. The resultant
optimal iterations for each separation is listed in Table 1.
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Figure 5. Optimally Smoothed Printer Response v.s. Averaged Measure-
ment for Cyan Separation

Optimal Number of Iterations for Each Separation

Separation | Number of Iterations
Cyan 12
Magenta 16
Yellow 16
Black 13

Then the optimal number of iterations for each separation
could be directly used for noise removal on the fifth data set.
The printer response verses the measurement data for cyan sep-
aration is shown in Figure 6 and the expected value of the noise
is -0.0099. The noise signal removed by the optimal number of
iterative filtering is shown in Figure 7.
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However, at customer sites, using all 8 bits of data for each
separation is a prohibitively large number of patches for cus-
tomers to scan. Hence, in Part II of this paper we develop methods
of optimal filtering on subsampled color data that utilize the noise
free reference curve developed here. In Part II, we describe meth-
ods of obtaining a close approach to the noise free, high resolution
color target data, with 1/4 rate subsampling.

Conclusion

Calibration is a vital step in color workflow and is performed
regularly to compensate for device variation in color reproduc-
tion. Input color signal noise, generated from the printing system
natural variation when printing the calibration target, affects the
accuracy and robustness of the calibration outcome. In this pa-
per, an optimal noise management method to reduce system noise
in the calibration target measurement is developed and the first
part of that, definition of a noise free, high resolution, reference
is derived. The result is a high reliabie, noise free, dEab target
for each separation. This noise free target will be shown, in Part
IT of this paper, to be the key to develop a capable sub-sample
method for calibration patch design. The proposed method has
utilized methods from time series filter development to develop
a filter and obtain the optimal number of filtering iterations for
each separation during calibration that can reliably remove noise
and preserve the signal. The obtained filter coefficients and opti-
mal number of iterations can then be applied to all the calibration
measurements without running the numerical search in the field
or printing multiple number of calibration targets.
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