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Abstract 
Externally-added charge control agents (EA-CCA) were 

prepared by means of a coacervation process.  Spherical silica 

particles of 100 nm average diameter were coated with two kinds 

of charge control agents (CCAs); one is a polymer type P-1 and 

the other is a low molecular weight type P-2.  Both of them make a 

remarkable contribution to toner charge.  In a concentration range 

from 1 to 1x103 ppm of CCA on toner, toner charge increased.  

From the relationship between the amount of EA-CCA in the toner 

and the tribocharge, P-2 was found more effective than P-1. It is 

estimated that 0.7 % of P-1 repeating units and 1.2 % of P-2 

molecules contribute to toner charge, respectively.  

Calculation of the surface coverage of P-2 on spherical silica 

particles shows that the efficient concentration region of charge 

agreed with the surface coverage.  The P-2 concentration was 50 

ppm based on toner.  This means that the CCA molecule has great 

effect on tribocharge in small concentration.  

Introduction  
Charge control agents (CCAs) are widely used for both 

pulverized and chemical prepared toners.  In the pulverized toner, 

CCA is applied as microcrystalline powder.  After kneading resin, 

CCA powder and other ingredients, their mixture is pulverized into 

powder of a suitable diameter.  Neither the amount of CCA 

particles nor the number of molecules on the toner surface is 

known in such a manufacturing method.  The influences of the 

resin and other ingredients on charge are also unknown.  

Furthermore, since external additives exist on the toner surface, 

contact probability between carrier and CCA is not clear in two-

component developer.  It is known that only a negative CCA has a 

large anion and a positive CCA has a large cation, when they are 

ionic molecules.  

Suka et al. [1] has reported that even a small amount of CCA 

is very effective on toner charge control when the CCA is added 

into the two-component developer.  Their work suggests that, 

although the CCA molecule has high chargeability, toner does not 

make use of CCA capability. 

   In this report, the authors attempt to clarify the effect of CCA on 

toner charge in molecular level by using two kinds of CCAs.  

Experimental 
Preparation of EA-CCA 

Two kinds of positively chargeable CCA shown in Fig. 1 

were applied to experiments.  The CCA P-1 was an alternating 

copolymer of styrene and maleic anhydride derivative.  The 

average unit molecular weight was 535 and the average degree of 

polymerization was 53.  The quarternarization ratio of P-1 was 

about 40 mol% judged from an amine value which was determined 

by titration.  The charging site was the quarternary ammonium salt.  

The CCA P-2 is a well-known sulfonic acid salt with a molecular 

weight of 499.  Spherical hydrophobic silica particles (SS100, 

from Shin-Etsu Chemical Co., Ltd.) were applied to experiments as 

the core for CCA.  They have an average particle size of 100 nm 

and a very narrow particle size distribution.  Therefore, they are 

very suitable for investigating the charging mechanism.  The shape 

and particle size distribution of SS100 are shown in Figs. 2 and 3, 

respectively.  Model toner was prepared from a pulverized styrene-

butyl acrylate copolymer without using wax and pigment.  Its 

shape is irregular as shown in Fig.4. The particle size distribution 

shows that of typical pulverized toner, as shown in Fig. 5.  The 

average diameter is 8.6 µm.   

The applied CCAs were dissolved in a desired concentration 

into an ethanol/methanol 9/1 mixed solvent.  Then SS100 was 

dispersed into the CCA solution.  The mixture was stirred 

vigorously in a few minutes and the excess solvent was evaporated.  

In the evaporation process, SS100 was coated with the CCA, 

because the CCA was insoluble in a high concentration in the 

solvent and silica particle played a role of nuclei for CCA 

recrystallization, which is coacervation.  The CCA molecules can 

be adsorbed on silica because of interaction between the 

hydrophobic silica surface and CCA molecules.  After evaporation 

of the solvent and drying, white powder was obtained.  After 

pulverization of the powder, EA-CCA was obtained.  The SS100 

coated with P-1 is described as EA(P-1) and that coated with P-2  

as EA(P-2).  The coating amount of CCA was in the range of from 

0.01 to 5% based on silica weight.   

Suka et al. [1] reported toner tribocharge properties applying 

CCA directly to model toner and a carrier.  Iimura et al. [2] 

reported that of CCA-coated toner.  In this report, we have adopted 

an approach to add CCA-coated silica as an external additive (EA-

CCA).  Tribocharge properties were investigated by using blow-off 

charge measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1   Structure of Applied CCAs 
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Tribocharge Measurement 

Toner tribocharge (Charge/toner weight ratio, Q/M) was 

measured by a using blow-off charge measurement apparatus, 

complying with the standard measurement procedure stipulated by 

ISJ[3].  One gram of model toner and 19 g of a standard carrier (#L 

from ISJ) were weighed and placed in 50 ml polyethylene bottle.  

One percent of EA-CCA based on model toner was added into the 

bottle.  The content was mixed for 2 to 32 minutes with a 6  

cycles/s shaker.  As shown in Fig. 6, carrier is coated with model 

toner uniformly.  Sample preparation and charge measurement 

were carried out under controlled room temperature (23±3℃) and 

humidity (55±15 %RH).  

In preparation of the two-component developer, it is usual 

that a carrier is mixed with toner which is already admixed with 

external additives.  Tribocharge was very similar between usual 

mixed developer (square plots in Fig. 7) and that of mixed carrier, 

toner and external additive at the same time (triangle plots in Fig. 

7), as shown in Fig. 7.  Therefore, developers were prepared by 

using the method as described above. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2   SEM photograph of SS100         Figure 3  Particle Size 

Distribution of SS100 

 

 

 

 

 

 

 

 

 

 

Figure 4   SEM photograph of                   Figure 5   Particle Size 

Model toner                                       Distribution of model toner 

 

 

 

 

 

 

 

 

 

 

 

Figure 6   SEM photograph of developer 

                 (Carrier is coating by toner) 

 

 

 

 

 

 

 
Figure 7   Influence of developer preparation method on toner charge 

Results and Discussion 
Effect of EA(P-1) 

SS100 without CCA coating was used as a negatively chargeable 

external additive.  The original contribution of SS100 to 

tribocharge was －4 µC/g from Q/M at 2 min mixing in Fig. 7. 

Carrier was spent by toner, and external additive and other 

damages affected tribocharge in longer vigorous mixing.  

Therefore, ΔQ/M at 2 min mixing was adopted.    

Fig. 8 shows the relationship between Q/M and mixing time of 

developer prepared from carrier, model toner and EA(P-1) which is 

coated with P-1 of different concentration.  The value of Q/M 

increases with mixing time, and saturates at around 16 min mixing 

for higher P-1 concentration systems (more than 200 ppm relative 

to toner).  SS100 without P-1 coating is very negative and Q/M is 

in the range of about －30 to －45 µC/g.  The Q/M value increases 

with the increasing amount of P-1.  Even when only 10 ppm of P-1 

is added to toner, the Q/M value is higher than that of no P-1 

addition.  This means that P-1 is effective on charging greatly even 

in a very small amount. 

Fig. 9 shows the relationship between Q/M and P-1 

concentration on toner.  The Q/M value increases dramatically 

with the increasing amount of P-1 in the range of less than 50 ppm.  

In the range larger than 50 ppm, Q/Ms still increases significantly 

and have no saturation point.  The tendency is almost similar for 

various lengths of mixing time.  This suggests that P-1 contributes 

to Q/M effectively in a lower concentration region and less 

effectively in a higher concentration region.  Fig. 10 shows the 

linear part of Fig. 9 in a P-1 concentration range of less than 50 

ppm.  The slope represents CCA contribution to Q/M.  Table 1 

shows the slopes in Fig. 10 obtained by linear regression 

calculation.  P-1 contribution to tribocharge estimated from the 

slope is 0.51 µC/ppm  

The unit average molecular weight of P-1 was 535, and 1 µg 
(1x10-6 grams, equal to ppm in this discussion) of P-1 has 

1.12x1015 unit molecules.  As described in the Experimental part, it 

is considered that the charging site is the quarternary ammonium 

salt and P-1 has 40 % of charging sites based on unit molecular 

number.  An electron has a charge of 1.6x10-19 C.  It is estimated 

that charging sites of P-1 contribute to tribocharge of 72 µC/ppm if 

all of P-1 charging sites contribute to toner charge.  However, the 

actual contribution rate was 0.51 µC/g.  This suggests that only 0.7 

mol% of charging sites contributes to tribocharge. 
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Figure 8    Dependence of charge on mixing time in model toners 

mixed with various concentrations of EA(P-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9   Relation between charge and P-1 content in toner for  

various mixing time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10   Relation between charge and P-1 content in toner (lower 

content region) for various mixing time 

Table 1   CCA Contribution to Charge from Fig. 10 

 

 

 

 

 

 

 

 

Effect of EA(P-2) 

Next, the contribution of P-2 to charging was investigated.  Fig. 11 

shows the relationship between Q/M and mixing time of developer 

prepared from carrier, model toner and EA(P-2) which is coated 

with P-2 in different concentration.  In contrast to Fig. 9, Q/M 

increases within 2 minute mixing.  After 2 min, Q/Ms slightly 

decreases with mixing time.  The Q/M values increase with the 

amount of P-2 in a similar way to the case of EA(P-1).  The Q/M 

increases when 10 ppm of P-2 was added to toner and P-2 has a 

higher efficiency than P-1 because Q/M increases by even 1 ppm 

addition of P-2.   

Fig. 12 shows the relationship between charge and P-2 

concentration on toner.  The Q/M value increases more 

dramatically with the increasing amount of P-2 than in the case of 

P-1 in the concentration range of less than 50 ppm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11    Dependence of charge on mixing time in model toners 

mixed with various concentration of EA(P-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12   Relationship between charge and P-2 content in toner 

for various mixing time 
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Figure 13   Relationship between charge and P-2 content in 

toner(lower content region) for various mixing time 

 

In the concentration range of larger than 50 ppm, Q/Ms 

saturates at around +20 µC/g. The tendency was almost similar for 

various mixing time.  However, the Q/M values of 32 min mixing 

are smaller than those of shorter mixing time.  This means that the 

carrier is spent in long time mixing as pointed above.  Fig. 13 

shows the linear part of Fig. 12.  The slope represents the 

contribution of P-2 to Q/M.  The contribution is found to be 2.82 

µC/ppm from the slope, after neglecting the date of 32 min mixing. 

Estimation on P-2, which is analogous to that of P-1, carried out 

using P-2 molecular weight of 499.  Contribution to toner charge is 

240 µC/ppm when all of P-2 molecules contribute to tribocharge.  

However, the experimental value suggests that only 1.2 mol% of 

charging sites contribute to the charge.   

Comparison of the charge contribution rate of P-1 and P-2 

shows that P-2 has efficiency about twice of that of P-1.  The 

sulfonic salt with low molecular weight is more effective than the 

polymeric quarternary ammonium salt. 

The coverage ratio of each CCA on SS100 surface can be 

calculated from the projection area of CCA molecules by assuming 

that each molecule adsorbs on SS100 with the maximum 

projection area.  In rough estimation, P-1 monomer unit has a 

projection area of 1x10-14 cm2 of projection area and a P-2 

molecule has 5.6x10-15 cm2, respectively.  Since 1% of EA-CCA is 

added to toner, 50 ppm of CCA based on toner weight means 0.5% 

CCA based on silica.  However, in P-1 system, the estimation can 

not explain the experimental results.  Adopting these assumptions, 

all the surface area of a 100 nm diameter spherical silica particle is 

covered by 0.3% of P-1 and 0.5% of P-2, respectively.  In EA(P-2) 

shown in Fig. 12, the estimation is very reasonable because Q/M 

saturates at a CCA concentration of less than 50 ppm.  In EA(P-1) 

system, however Q/M increases to some extent with the increasing 

amount of P-1  beyond 100% coverage at 30 ppm, as shown in Fig. 

9.  It is thought that the polymer type P-1 has long main chain and 

its molecules adsorbed on SS100 is not spread and part of 

chargeable sites exist on SS100 surface.  The assumption of 

projection area is not suitable for the polymer type CCA.  These 

reasons are the causes that the chargeable sites of P-1 are less 

effective than P-2.   

 

Table 2  CCA Contribution to Charge from Fig. 13 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 
(1) Two kinds of CCA, the polymer type P-1 and the low 

molecular weight type P-2, were coated on spherical silica 

particle by using a coacervation method. 

(2) Both of CCAs affect on toner tribocharge in a small 

concentration range of less than 50 ppm. 

(3) It was clarified that 0.7 mol% of charging sites in P-1 and 1.2 

mol% of those in P-2 contribute to toner tribocharge.    

(4) Tribocharge saturates by adding excess P-2 in the 

concentration range of around 50 ppm based on toner and this 

concentration agreed with 100% coverage ratio of P-2 on 

spherical silica particle. 

(5) The CCA P-1 has different efficiency on tribocharge from the 

CCA P-2 due to the shape they take on the silica surface.       
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