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Abstract 
In the field of electrophotographic printing, the emergence of 

next-generation printing technologies such as chemically prepared 

toners (CPT) is changing pigment performance requirements. 

Every CPT processing technology has a unique set of performance 

requirements imposed on the colorant. In order to ensure optimum 

color performance, pigment particles (both black and color) must 

be well-dispersed and compatible within a host resin. The 

challenge becomes balancing dispersion quality and resin 

compatibility in the face of other environmental constraints such 

as transitions from solvent to water, pH changes, the presence of 

flocculating agents and surfactants, and large temperature ranges. 

Under these strict conditions, the ability to tune pigment surface 

properties (e.g. hydrophilic to hydrophobic, ionic to non-ionic, 

polymeric vs. small-molecule) to meet both improved color 

performance requirements as well as CPT processing constraints 

becomes very powerful. In response to these challenges, Cabot has 

developed several surface modification technologies that enable 

dispersions of pigments in aqueous and non-aqueous systems. In 

this presentation, we will highlight Cabot’s portfolio of small-

molecule and polymer modified pigments for improved 

performance in chemical toner systems. We will also discuss how 

the selection of carbon black morphology can influence key 

aspects of toner performance, such as color. 

Introduction 
 

The basis of toner consists of pigmented polymer particles 

that provide the appropriate image characteristics (optical density, 

color) after transfer and fusion to the paper. In non-magnetic toner 

carbon black has been the dominant black pigment. One of the 

major trends in the recent decade has been the shift to color 

printing which has created a demand for toner containing 

subtractive colorants (CMYK). Historically toner particles have 

been prepared by compounding the black and color pigments into 

the toner polymers followed by a grinding/classification process.  

As the demand has increased for lower total cost of ownership 

and higher resolution printing, the toner industry has shifted its 

manufacturing processes to chemical processes. These processes 

incorporate the pigments into the polymer resin either by 

agglomeration in water or by polymerization in an organic phase 

surrounding the pigment particles [1]. This creates a challenge for 

both the toner formulators and the pigment suppliers, as the 

pigments need to remain dispersed in phases that are chemically 

very different without the application of any mechanical energy. 

Maintaining the dispersion quality of the pigments is critical to 

them delivering the optimal color and electrical performance in the 

toner. 

In this paper we will discuss the various options that are 

accessible through Cabot’s surface modification technology that 

allows flexibility in the preparation of toner. In addition, we will 

illustrate how changing the morphology and surface chemistry of 

carbon black can have an effect on the color properties of films 

simulating the printed page. 

 

Surface Modification of Pigments 
Over the past decade, Cabot Corporation has developed 

proprietary chemical modification technologies that can be used to 

alter the surface chemistry of pigments. One type of chemical 

modification technology utilizes diazonium salt intermediates to 

attach a variety of functional groups to carbon black and colored 

pigments [2].  The treating agent can be varied according to the 

application requirements. and can be ionic or non-ionic, 

hydrophilic or hydrophobic, small molecule or polymeric giving a 

lot of flexibility in terms of designing the pigment surface 

chemistry. These modifications are possible on the full range of 

color pigments used in digital imaging. For example, they can be 

used with cyan, magenta, red, and yellow color pigments and any 

carbon black. The modified pigments can be used either as is or in 

combination with commercially available polymers to open up a 

myriad of different options for tailoring the surfaces of the 

pigments specifically for targeted dispersibility and compatibility 

in either solvents or polymeric systems, as has been discussed in 

previous publications [3, 4]. 

 

Figure 1. Cabot approaches to functional pigments for CPT  

Small-molecule diazonium treatments alone (Figure 1-I) can 

effectively tune the surface energy of pigment surface for 

improved resin compatibility with ranges of treatments that are 

hydrophilic, hydrophobic, basic, acidic, reactive, etc. There are 
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also cases where select polymers can have high affinities for 

certain pigments in the absence of surface modification. However, 

polymer functionalized pigments (Figure 1-II) stabilized solely 

through physisorption, such as conventional dispersants, can 

become unstable during toner formulation testing and limited 

conventional dispersant solutions exist today for colored pigments. 

One way to prevent pigment agglomeration due to desorption of 

polymers from the pigment surface is to combine surface modified 

pigments with functional polymers (Figure 1-III). Here, 

complementary non-covalent interactions between surface 

modified pigment and polymer are used to enhance dispersion 

stability. In these systems, the resulting pigment dispersions will 

remain stable indefinitely until something begins to compete with 

the polymer-pigment interaction. In a system such as this, where 

toner formulations could compete with pigment-polymer 

interactions, Cabot has engineered a series of polymer modified 

pigments where the polymer has either been grafted to or directly 

reacted with the pigment surface (Figure 1-IV). Direct polymer 

attachment affords stable pigment dispersions with formulation 

flexibility. 

Effects of Pigment Surface Chemistry on CPT 
Processes 

 

From the pigment perspective we can classify the types of 

CPT processes into two general categories: 

- Aqueous processes, such as Emulsion Aggregation (EA) [1], 

[5] 

- Organic (solvent or monomer) processes, such as suspension 

polymerization of styrene acrylic based toner or preparation of 

polyester based toner using solvents such as ethyl acetate. [7] 

In the following sections we will discuss advantages and 

disadvantages of different pigment surface chemistries for these 

two classes of CPT processes. 

 

Aqueous processes 
In typical EA processes, like those described in Ref. [1].[5] 

the pigments are dispersed in water using surfactants that can be 

anionic, cationic or non-ionic. This dispersion is then mixed with a 

stable latex emulsion of the polymer of interest. The two phases 

can then be agglomerated using a variety of different flocculation 

agents and the contiguous toner particle is formed by heating the 

system above the Tg of the toner polymer. The mixture is then 

cooled, washed to remove the surfactants, and coalescing agents, 

and finally dried to produce the toner powder. 

An overview of the anticipated performance of Cabot’s range 

of surface modified pigments in aqueous toner processing is 

shown in Figure 2. Pigments modified with strong acid groups will 

be readily dispersible in water over a range of pH, but may have 

difficulty agglomerating with the polymer latex and other 

ingredients in the agglomeration step of the process because of 

their outstanding dispersion stability in water. They may work best 

with resin latexes that are stabilized by similarly strong acidic 

groups. On the other hand, pigments modified with weak acid 

groups are more easily destabilized, because the stabilization can 

be easily disrupted with variations in pH [6] or the presence of 

multivalent ions, both known triggers for agglomeration in the EA 

process. A carefully designed pigment can have surface groups 

with pKa matching that of the polymer, thus allowing for 

coordinated flocculation. 

 

 

 
Figure 2. Anticipated effects of pigment surface treatment 
on EA toner. 

Pigments with hydrophobic surfaces will by definition not 

disperse well in water without the assistance of surfactants. 

However, once these pigments are agglomerated and in the 

vicinity of the polymer in the toner particle, their surface chemistry 

can help compatibilize the pigment with the surrounding polymer 

thus providing improved dispersion quality in the final toner. 

Similar trends can be anticipated with polymer modified pigments. 

Pigments sterically stabilized with hydrophilic polymers will form 

stable aqueous dispersions that will remain unperturbed by most 

triggers of destabilization, and thus are not anticipated to get easily 

incorporated into the toner. Hydrophobic polymer modified 

pigments can be dispersed in water with the aid of surfactants and 

will behave similar to hydrophobic small molecule modified 

pigments in the toner. 

The flexibility of the pigment surface design is a factor that 

can be considered in the troubleshooting and optimization of these 

toner making processes. 

Organic Processes 
In this class of processes the pigment is typically dispersed 

first into an organic solvent, monomer, or toner resin solution [7]. 

The organic dispersion is then mixed in water under shear and the 

organic droplets are then converted into toner particle either by 

polymerization of the monomer, by cross-polymerization of the 

polymer resin and/or by evaporation of the organic solvent. The 

pigments need to be well dispersed in the starting solvent and 

remain dispersed in the organic phase throughout the stages of 

toner particle formation. 

Similarly to the aqueous processes, it is anticipated that 

pigments with different surface functionalities will behave very 

differently in this class of toner making processes. Very 

hydrophilic pigment surfaces are unlikely to yield successful toner, 

as the pigment is likely to prefer the aqueous phase. Pigments 

whose surfaces have been rendered hydrophobic will perform 

better, if the modified surface can retain its compatibility with the 

starting solvent and the final toner polymer. 
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Example: Dispersion in solvent 
We present a few examples of the dispersion quality that can 

be accomplished with the modifications described above in Figure 

1. Pigments in Table 1 have been modified with surface acid 

groups and then further modified with PO/EO containing polymers 

The dispersions in ethyl acetate (a commonly used solvent in 

polyester organic CPT processes) were prepared using 2mm glass 

beads in a Skandex paint shaker and filtered to remove the beads. 

The particle size measurements were conducted using a Nanotrac. 

It is apparent from Table 1 that the polymer alone cannot stabilize 

the pigment. Associating these polymers strongly with the acidic 

surface of the modified PR122 leads to an order of magnitude 

decrease in the mean particle size. Both EO-rich and PO-rich 

polymers yield comparably good dispersion performance. 

 

Pigment Surface Mean particle size 

(nm) 

Solvent: EtAc 

PR122 (I) Acid 1291 

PR122 (II) EO/PO-1 1131 

PR122 (III) Acid and EO/PO-1 132 

PR122 (III) Acid and EO/PO-2 121 
Table 1. Effect of surface modification on pigment 
dispersion quality In ethyl acetate 

Example: Compatibility in polymer 
The dispersions in ethyl acetate were let-down with solution 

of the polyester toner resin to prepare films that simulate the 

appearance of fused toner on paper. Typically, dispersions are 

letdown to prepare solutions of 20 wt% total solids of which 1% 

of the total solids is pigment. These solutions were then drawn 

down on glass slides to prepare films for further characterization.  

These films were examined under an Olympus BX51 optical 

microscope to determine the compatibility of the modified 

pigments with the polyester resin. Images of a PR122 modified 

with the EO/PO-1 polymer via covalent attachment (route IV) are 

shown in Figure 3 below.  

 

 
Figure 3. Optical microscopy image of film containing 
PR122 with covalently attached EO/PO-1 polymer (via 
Route IV). 

 
Figure 4. Optical microscopy image of film containing 
PB15:3 modified with styrene acrylic polymer (via Route II). 

The type of attached polymer can have a significant effect on 

the compatibility of the modified pigment with the toner resin. For 

example, Figure 4 is a micrograph of a film containing PB15:3 

modified with a styrene acrylic polymer which shows clear 

agglomeration of the pigment in the presence of the same polyester 

toner resin that was used in the film of Figure 3. 

Effect of Carbon Black Morphology 
 

Carbon black is the most prevalent black pigment in color 

toner formulations. In addition to the surface modification with 

diazonium salts, carbon black can be modified by oxidation which 

introduces non-specifically a variety of oxygen containing groups 

on the carbon surface. These groups can then interact with 

polymers in ways similar to those described in the previous section 

for modified pigments. In addition to the modification of its 

surface chemistry, the carbon black morphology can be altered to 

enhance some of the color characteristics of the toner.  

In most pigmenting applications, utilizing higher surface area 

carbon black particles leads to improvements of the color 

properties of the final material, e.g. a coating or polymer 

composite. In the case of toner, and especially CPT-toner the 

situation is more complex, since higher surface area carbons are 

harder to disperse in various solvent systems and consequently 

their color performance may not be consistent with other 

applications. 

 

Dispersion and Color Performance 
Dispersions were first prepared using similar procedures as 

those described above. The dispersions were let down with 

commercial polyester toner resin to 20 wt% total solids. The 

solutions were then spin-coated on glass slides to prepare 

reproducible films with 2.1 µm thickness. The carbon black 

loading in the solutions that were spin-coated was such that the 

final films contained 10 wt% carbon black. The optical density of 

the films was measured against white paper using a Macbeth 

RD918 optical densitometer and the lightness (L*) was measured 

against white paper using a Hunter Lab Labscan XE colorimeter. 
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CB Base CB 

Surface 

Area (m2/g) 

Treatment Mean particle 

size (nm) 

Solvent: EtAc 

A 95 None 143 

B 95 Oxidized 140 

C 125 Oxidized 120 

D 220 Oxidized 138 

Table 2. Effect of treatment and morphology on carbon 
black dispersion quality. 

 

CB L* of 

films 

Normalized 

OD (per 1 

micron)  

A 8.7 0.95 

B 5.9 1.04 

C 5.4 1.10 

D 3.5 1.15 

Table 3.  Effect of carbon black selection on color properties 
of polyester film containing 10 wt% CB. 

From the results in Table 2, we see that all four carbon blacks 

can be dispersed down to the aggregate size in the organic phase. 

In Table 3 we see that changing the surface chemistry of the 

carbon black can have an effect on the color properties of the 

films. Using an oxidized carbon black improved the lightness of 

the films and yielded a 10% improvement in the optical density of 

the films. In addition to the surface chemistry, increasing the base 

carbon surface area is also shown to have an effect. Doubling the 

surface area of the base carbon black led to an additional 10% 

increase in the optical density of the films. 

Conclusions 
The arrival of chemically produced toner technologies has 

enabled the next generation of printing technologies with an 

emphasis on print quality, color, and speed. Modification of the 

pigment surface chemistry allows the development of customized 

colorants that can meet the performance requirements of every step 

of the toner making process. Different chemistries may be needed 

in aqueous compared to organic solvent based CPT processes. 

In the case of carbon black, the most commonly used black 

pigment in CPT, the flexibility allowed by surface modification of 

the pigment surface can be complemented by changes in the 

morphology. 
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