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Abstract 
The dark storage test relies on elevated temperatures to 

accelerate aging of print materials that are kept in photo albums, 

file cabinets, shoe boxes and other enclosed containers.  However, 

the widely used free hanging test method in dark storage testing of 

print images does not simulate the actual consumer storage 

condition.  Few studies have been performed to check the validity 

of the accelerated thermal test for print images because the 

accelerated tests themselves can take months or years to complete.  

Earlier research into the sources of noise in the dark storage test 

found that porous photo papers exposed to ozone prior to starting 

the accelerated thermal test would fail much faster.  By 

deliberately pre-conditioning porous photo papers with ozone it is 

possible to accelerate these media thermal tests by orders of 

magnitude.  This makes it possible to finally compare ambient real 

world dark storage test results to testing at elevated temperatures.  

This paper will describe those observations, which include some 

unexpected but repeatable results. 

Introduction 
The Arrhenius method for estimating dark storage of print 

samples has been the most enduring of the image permanence tests.  

The test method has not been significantly altered for decades and 

allows for direct predictions of ambient performance.  However, it 

has been the authors’ experience in using the free hanging test 

method for dark stability that the data is inconsistent, and this is 

especially true with porous photo paper tests.  Some of the factors 

that influence the test results relate to handling: whether the media 

has been exposed to airborne contaminants, and whether the media 

is exposed to ambient light during measurement or testing.  Other 

factors that influence the test results are whether tight control of 

temperature and humidity in the test chamber is maintained, 

whether there is airflow across the samples, and whether other test 

samples are present in the test chamber [1]. 

The dark storage test, also referred to as dark stability or 

thermal stability, often provides life estimates of hundreds or 

thousands of years.  There are bold claims made on photo media 

packaging based on these test results.  But how reliable are the test 

results?  The sheer length of time required for thermal stability 

testing seems to preclude the possibility of verifying these results.  

Fortunately, it was discovered that many porous photo papers will 

degrade much more quickly after being exposed to ozone [2].    

Testing has demonstrated that one can start with two identical sets 

of media, leave one set sealed and protected while the other is pre-

conditioned with a controlled ozone dose, and then compare both 

sets again and find that they are still identical visually.  However, 

once removed from the ozone, some media begin to yellow much 

more quickly [2].  This altered behavior allows elevated thermal 

stability tests to be completed in hours instead of months.  

Moreover, verification of results at ambient temperatures is now 

possible in months rather than in decades or centuries. 

 

Experiment 
The equipment used in this investigation is identical to the 

referenced studies.  Sample test targets and preparation also remain 

the same.  One key difference is the magnitude of the initial ozone 

pre-exposure dose, which was 500 hours at 5 PPM, or 2500 PPM-

hours of ozone.  Such a large dose was probably not necessary, but 

ensured an adequate response of the media in an ambient test 

requiring 6 months to complete. 

Prior to this particular experiment, the authors had attempted 

several ambient thermal stability tests.  Each of these tests ran 

between 8 to 12 months and exhibited unusual behavior.  To 

eliminate any outside influences for this test, great care was taken 

in the sample handling and measurement.  For example, samples 

were transported and measured in the dark (office lights were 

turned off and flashlights used).  Moreover, the ambient air testing 

was conducted in a specially designed cabinet located in an 

environmentally controlled lab at 23C/50% RH with filtered air.  

This cabinet was designed to keep the samples dark during testing 

while also providing slow air exchanges with the surrounding 

filtered lab air. 

The elevated temperature tests were run at 37C/50% RH, 

50C/50% RH, and 64C/50% RH.  The 37C test was measured at 2, 

10, 40, 100, 200, and 500 hours.  The 50C test was measured at 2, 

4, 8, 20, 40, and 100 hours.  The 64C test was measured at 0.5, 1, 

2, 4, 8, and 20 hours.  For the first few measurements at each 

temperature, the samples were introduced into the chamber after it 

had reached the test temperature.  This is because the typical 15-

minute temperature ramp up would have introduced a large error 

into the test. 

The study evaluated both the standard free hanging test 

method as well as the recently proposed sandwich test method [1].  

The sandwich method used in this study was the originally 

proposed method using the same media as the test sample.  

Another series of experiments have been started using the newer 

sandwich method with polyester film, but data is not yet available 

for comparison. 

Results and Discussion 
Because the ambient test ran for over half a year, two Gretag 

Spectrolino Spectroscans were used to take measurements as a 

precaution in case one of the instruments failed.  Having two sets 

of measurements from two separate spectrometers also permitted a 

direct comparison between them.  It was found that for most of the 

media tested, the deviation between the instruments was less than 

0.1 delta E, with a few media up to 0.2 delta E.  This corresponded 

to about 1-2% deviation.  There were 4 media which showed 

consistently larger deviations between devices right from the start 

of the test.  Since this was isolated to only these media, the 

problem was determined to be related to the inherent measurement 

capabilities of the spectrometer rather than due to instrument drift. 
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A large number of commercially available media were 

evaluated in this study and are identified by the letters A through 

Y.  The majority of the media tested are porous photo papers, but 

samples of swellable, matte coated, and plain paper were included 

as well.  Figure 1 shows data collected from two different porous 

photo papers on both spectrometers (identified as ‘2’ and ‘4’) in 

the free hanging ambient temperature test.  As can be seen, both 

devices measured nearly the same delta E values when measuring 

the same media.  Another observation from this plot is the erratic 

change in paper yellowing.  This erratic behavior is similar to what 

was observed in earlier ambient thermal tests: a reversal in media 

yellowing.  It was originally believed to be from light bleaching, 

but this test had taken extra precautions to eliminate incidental 

light exposure.  That both spectrometers are showing it also rules 

out the possibility of random instrument variation or improper 

calibration. 
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Figure 1.  Measurements of media J and K using Free Hanging Method in 

Ambient (23C/50%) test condition.  Measurements are shown of the exact 

same samples using two different measurement devices (2) and (4). 

Table 1 shows all the measurement data for the ambient 

thermal test using the free hanging method.  The 3 media with the 

least amount of yellowing are swellable, matte, and plain papers: 

D, E, and Y respectively.  The media with temporary reversals in 

yellowing are: A, B, C, F, G, H, I, J, K, L, M, O, P, Q, R, S, T, U, 

W, and X.  Not shown is data from a simultaneous test at ambient 

temperature using the sandwich method.  The sandwiched media 

samples showing yellowing reversal are: E, F, G, and J. The 

sandwich method resulted in less severe reversals; moreover, an 

ongoing test using the newly proposed sandwich method with 

polyester film is showing no yellowing reversals in the ambient 

thermal test.  These comparisons suggest that the cause of the 

reversals is related to the air exposure during the dark stability test. 

Table 1.  Measurement values during ambient test (23C/50%) of 

media using Free Hanging Method. 

Media 360 760 1370 2040 3020 4030 5040

A 6.28 9.48 10.98 11.73 12.72 12.55 13.99

B 3.38 5.60 6.66 7.75 8.67 8.60 9.26

C 2.39 4.65 5.56 6.57 7.19 6.69 8.12

D 0.07 0.12 0.15 0.18 0.23 0.25 0.27

E 0.12 0.33 0.39 0.48 0.58 0.65 0.75

F 2.28 4.53 5.33 5.81 5.88 5.25 5.95

G 0.59 1.05 1.07 1.16 1.12 1.07 1.20

H 0.90 1.75 1.99 2.22 2.13 2.00 2.28

I 1.98 3.47 4.13 4.47 4.27 4.17 4.53

J 1.29 2.49 2.59 2.69 2.50 2.33 2.57

K 1.51 2.66 2.93 3.15 4.10 4.03 4.91

L 1.36 2.68 3.54 4.08 5.51 5.61 6.99

M 1.33 2.60 3.10 3.51 4.39 4.28 5.16

N 1.85 3.55 4.73 5.71 7.32 7.44 8.93

O 2.32 3.90 4.42 4.67 5.50 5.48 6.79

P 3.39 5.43 6.81 7.72 8.62 8.52 8.89

Q 2.01 3.55 4.28 4.62 5.19 4.74 5.67

R 3.32 5.44 6.75 7.68 8.63 8.47 9.14

S 7.48 12.17 15.34 16.62 18.16 17.65 19.33

T 5.40 8.97 11.10 12.26 12.90 12.07 13.58

U 0.79 1.42 1.60 1.68 1.77 1.66 1.87

V 1.25 1.96 2.06 2.24 2.36 2.37 2.73

W 4.37 7.35 9.24 9.71 10.33 9.99 10.95

X 5.77 9.59 11.97 13.06 13.61 13.10 14.11

Y 0.14 0.27 0.39 0.48 0.59 0.66 0.76

Delta E at Indicated Time (Hours)

 
 

 

One basis of the standardized testing is that the yellowing 

behavior of any given media should be consistent within the range 

of temperatures tested in the dark stability test.  To see whether 

this was the case, the measurement data from all the media at each 

test temperature were compared.  It was found that while many of 

the elevated temperature tests using the free hanging method were 

consistent with each other, there was a discontinuity in behavior 

when comparing to the ambient test data.  Figure 2 shows an 

example of this by plotting the free hanging measurement data for 

media W.  In order to make visual comparison between the tests 

easier, the time scale was normalized for each temperature data set 

according to when the media passed the failure threshold of 10 

delta E in that data set.  As can be seen, the plot shows excellent 

agreement between the 3 accelerated tests at 37C, 50C, and 64C; 

however, the ambient test at 23C showed far more yellowing at the 

beginning of the experiment.  This data may also be viewed in an 

Arrhenius plot, as depicted in Figure 3.  In that figure, each data 

point represents the time to failure at that temperature.  The 

ambient temperature data point is at the upper right corner of the 

plot.  The dashed line through the elevated temperature data is the 

best fit for the accelerated tests.  If that dashed line is extrapolated 

to the 23C temperature line it intersects at a point far below the 

actual failure point of the ambient temperature test.   

Figure 4 shows measurements from media W using the 

sandwich test method.  This time the behavior of the ambient test 

is closely aligned with the elevated temperature tests.  This is also 

evident in the Arrhenius plot shown in Figure 5. 
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Figure 2.  Measurements of media W using Free Hanging Method for 

accelerated tests at 64C, 50C, and 37C compared with ambient test at 23C 

with time scale normalized to a 10 delta E failure threshold. 
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Figure 3.  Arrhenius plot of media W using Free Hanging Method for 

accelerated tests at 64C, 50C, and 37C compared with ambient test at 23C. 
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Figure 4.  Measurements of media W using Sandwich Method for accelerated 

tests at 64C, 50C, and 37C compared with ambient test at 23C with time scale 

normalized to a 10 delta E failure threshold. 
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Figure 5.  Arrhenius plot of media W using Sandwich Method for accelerated 

tests at 64C, 50C, and 37C compared with ambient test at 23C. 
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Referring back to Figure 3, according to the Arrhenius 

method, the point at which the extrapolated dashed line crosses the 

23C temperature line is the predicted life estimate at ambient based 

on the accelerated tests.  For media W this value is 228 hours 

using the free hanging method.  The actual ambient test took just 

over 4000 hours to reach failure, so the ratio between predicted 

and actual failure time was 0.06.  In contrast, the accelerated tests 

using sandwich method predicted that media W would fail in 1364 

hours. The actual failure time of media W in the sandwiched 

ambient test was just under 2000 hours, so the ratio between 

predicted and actual failure times is 0.69.  A ratio of 1 represents 

perfect agreement.  While it is good to be conservative in life 

predictions, there is no value in having a life prediction that is an 

order of magnitude lower than the actual life. 

By using the ratio between predicted and actual failure times, 

all the media results can be condensed into a single table rather 

than comparing dozens of figures.  Table 2 shows these results for 

all the media.  Note that because some media yellow much more 

slowly than others, for those media the failure threshold was 

adjusted down to either 5 or 2 delta E in order to minimize any 

errors associated with extrapolating to the failure threshold. 

Among all the media tested in the free hanging method, the 

plain paper (media Y) had the best agreement between predicted 

and actual life with a ratio of 0.62.  The ratio was not much better 

for this media using the sandwich method with the same media, but 

this was expected since separate testing had already confirmed that 

plain paper was ineffective as a sandwiching material. 

The average of all the failure time ratios using the free 

hanging method was 0.20, and 0.49 using the sandwich method 

(excluding media T).  Thus the sandwich method is more effective 

in producing accurate prediction results from the Arrhenius 

method than the free hanging method.  However, the accuracy of 

the test method is still disappointing. 

 

Conclusion 
By exploiting the otherwise undesirable property of many 

porous photo papers to yellow more quickly after being exposed to 

ozone, it was possible to check the validity of dark storage testing 

using elevated test temperatures and the Arrhenius method to 

predict ambient image stability.  The results showed that the free 

hanging test method underestimated the actual failure time by an 

average factor of 5, while the sandwich test method underestimated 

dark storage permanence by an average factor of 2. 

While it is reassuring that the dark storage life predictions 

from the accelerated thermal test conditions underestimate the 

actual life, the value of the test method decreases with that 

corresponding loss of accuracy.  Additional testing of the sandwich 

method using polyester film as a sandwiching material is showing 

further improvements, especially in a new ambient test currently in 

progress.  Future updates will be documented as data is collected. 

 

 

 

 

 

 

 

Table 2.  Hours to failure for free hanging and sandwich test 

methods at 23C/50% RH. 

Media Delta E Predicted Actual Ratio Predicted Actual Ratio

A 10 192 974 0.20 347 1026 0.34

B 5 170 656 0.26 269 735 0.37

C 5 227 999 0.23 468 955 0.49

D 2 10348 99020 0.10 15550 21923 0.71

E 2 1345 16857 0.08 1097 9607 0.11

F 5 310 1118 0.28 363 707 0.51

G 2 264 11244 0.02 409 1644 0.25

H 2 261 1399 0.19 640 1254 0.51

I 2 126 367 0.34 248 378 0.66

J 2 150 601 0.25 154 330 0.47

K 2 142 532 0.27 363 638 0.57

L 5 310 2672 0.12 377 1344 0.28

M 5 427 4857 0.09 810 1514 0.53

N 5 256 1552 0.17 289 953 0.30

O 5 233 2428 0.10 465 1104 0.42

P 5 226 680 0.33 252 726 0.35

Q 5 208 4312 0.05 720 1498 0.48

R 5 186 681 0.27 281 756 0.37

S 10 185 578 0.32 700 1004 0.70

T 10 467 1056 0.44 2194 1273 1.72

U 2 290 5703 0.05 786 829 0.95

V 2 196 990 0.20 213 557 0.38

W 10 228 4039 0.06 1364 1971 0.69

X 10 198 868 0.23 860 1242 0.69

Y 2 11606 18820 0.62 11880 17472 0.68

Average 0.20 Average 0.49

Failure 

Threshold Free Hanging (23C) Sandwiched (23C)

Hours to Failure (actual test to 5000 hours)
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