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Abstract 
The digital print industry is working toward the goal of 

adopting improved test methods for image permanence.  As part of 

this effort, the new test methods are being designed to isolate the 

environmental variables that impact image permanence.  The 

benefits of this approach are that it simplifies the test methods and 

test equipment while promoting test results that can be reproduced 

at other test laboratories.  To understand which variables to 

isolate for a given test method, it is necessary to investigate a 

broad range of conditions which may affect the test results.  This 

study focused on the impact of changing the temperature in Xenon 

testing while holding all other conditions constant.  It was found 

that higher temperatures significantly increased the sample fade 

rate and that this test parameter will need to be tightly controlled.  

This research is part of ongoing work contributing to the 

development of standardized test methods for image permanence. 

 

Introduction 
Xenon light sources are often used to simulate sunlight for 

testing durability of many products.  Like sunlight, the infrared 

component of Xenon light can heat test samples well above the 

ambient air temperature of the test chamber.  Consequently, some 

Xenon test chambers are equipped with refrigeration systems 

designed to help keep test samples cool.  At the time of this testing, 

Lexmark had two Xenon test chambers, one capable of active 

refrigeration and one lacking that capability.  Earlier work had 

found that both temperature and humidity play an important role in 

the image permanence of print samples in ozone stability testing 

[1].  The research described in this paper investigates the relevance 

of sample temperature to the stability of print images in Xenon 

light testing. 

 

Experiment 
The following equipment was used in testing: 

• Minolta T-10M Illuminance Meter 

• Kahn Optidew Bench chilled mirror hygrometer  

• Digi-Sense 12-Channel Scanning Thermocouple 

Thermometer Model 69200 with Type T Thermocouples 

• Atlas Ci4000 Xenon Weather-Ometer 

• Atlas Ci3000 Xenon Weather-Ometer 

• Gretag Spectrolino/Spectroscan 

The Atlas Xenon Weather-Ometers can be fitted with different 

glass filters on the lamp to customize the spectral power 

distribution of the emitted light.  For this testing, lamps in both 

chambers had soda lime outer filters and CIRA (Coated Infrared 

Absorbing) inner filters.  These test chambers were also originally 

equipped with black panel temperature (BPT) sensors, used to 

maintain sample temperature control in the chamber.  Prior to 

beginning this study the sensors were replaced with white panel 

temperature (WPT) sensors that much more closely match the 

actual sample temperature, as shown in Table 1.  This paper will 

hereafter refer to the WPT as the sample temperature, although it is 

understood that the actual sample temperatures deviate from the 

WPT depending on ink colorants, patch density, patch size, and 

several other important control variables such as airflow rate and 

light intensity. 

Table 1.  Xenon sample temperatures: relative to air 

temperature (at 80klux and 2 m/s airflow rate). 

Black Patch 8.6

Gray Patch 4.8

Cyan Patch 6.7

Magenta Patch 5.7

Yellow Patch 5.9

Unprinted Media 4.9

Black Panel 15.4

White Panel 5.1

Temperature [Celsius] 

(Relative to Air)

 
 

 

Each Xenon test chamber design and setup has an inherent 

range of capability for stable operation and control at the sample 

locations, as a result of refrigeration control (if present), light 

intensity operating point, SPD filtration, airflow control and 

automated process control logic.  

The light intensity was set to control at 80 klux (+/-3 klux) for 

all tests using an independent light meter.  At this desired light 

intensity, the lowest stable operating temperature for the Atlas 

Ci3000 was found to be at a 28C air temperature and 35C sample 

temperature.  This became the point of comparison to the Ci4000’s 

standard operating condition of 20C air temperature and 25C 

sample temperature.  The Ci4000 was run at both sample 

temperatures while the Ci3000 was only run at the higher 

temperature.  Having a common test temperature for both 

chambers permitted an analysis of the reproducibility between 

them.  All testing was at 50% RH.  Temperature and relative 

humidity in both chambers were referenced to the same chilled 

mirror hygrometer, which was also equipped with a Resistance 

Temperature Detector (RTD). 

Test samples were evaluated from 12 different systems, 

although only 10 of these could be tested in the Ci3000 due to its 

smaller size.  Inks will be identified by the letters A through P and 

media by the numbers 1 through 5.  Pigment and dye based inks 

were printed on porous photo papers recommended by their 

respective manufacturers.  The tests were each run for a total of 

420 hours, with measurements made every 70 hours. 
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Results and Discussion 
The first part of the study investigated only the influence of 

temperature in the Xenon light stability test.  This was 

accomplished by testing samples in the Ci4000 at 25C with 

refrigeration active (20C air), and then upon completion of that test 

the refrigeration was turned off and the sample temperature 

setpoint changed to 35C (28C air) for a follow on test.  The 

samples were prepared separately for these tests so that each had a 

2-week dry time prior to testing [2]. 

Turning the refrigeration system on and off revealed an 

environmental control problem in the Ci4000: the refrigeration 

system is overpowered for image permanence test conditions.  A 

consequence of this is that the humidity fluctuates more when the 

refrigeration is on, as shown in Figure 1, than when it is off, as 

shown in Figure 2.  The temperature control is about the same for 

both modes of operation, unless the refrigeration coils ice up, 

which does happen on occasion. 

The preferred mode of operating the Ci4000 is with the 

refrigeration off, as it provides more stability in the environmental 

control.  Several modifications have been made to the Ci4000 to 

allow it to run more tests without refrigeration.  The most 

promising is simply using chilled water instead of refrigerant 

within the chamber’s evaporator coils to cool the air within the 

chamber. 

Once the tests at both temperatures were complete, fade data 

from each of the 12 systems were compared at consistent times 

between the two temperatures.  The data for all systems and 

primary colorants are shown in Table 2.  For example, system A1 

cyan faded 70% as much at 25C as it did at 35C, while system A1 

yellow faded the same at 25C and 35C.  The actual fade rates of 

these systems is not shown, but varied considerably.  System C1 

cyan fade at 420 hours was 6.2% at 25C and 9.3% at 35C, while 

system D1 fade at 350 hours was 33.7% at 25C and 58.2% at 35C.  

The data used in the calculations was selected from the point in 

time at which the sample fade was closest to 40% for both test 

temperatures.  The four systems shown with grayed cells are those 

using pigment inks.  The cyan ink for M5 did not fade enough to 

provide an accurate comparison. 

Among all the inks tested, none faded more at 25C than at 

35C, although there were a few that showed equivalent fade at the 

two temperatures (values near 100% in Table 2).  Humidity may 

have played a role in this outcome; for example, it is known that 

the yellow ink of system A1 is sensitive to humidity.  Even though 

relative humidity with respect to air temperature was kept constant 

at 50%, the absolute moisture content of the sample at 35C was 

greater than at 25C and could have led to ink migration.  Ink 

migration can cause an increase in optical density, which would 

thus counteract the increased fading at 35C and make it appear as 

though there was no difference between the two temperatures.  

Future tests are planned to isolate these interactions.  The pigment 

inks, which are not sensitive to humidity migration, all showed 

much less fading at 25C than at 35C. 

After concluding the 35C temperature test in the Ci4000, the 

same test was run in the Ci3000 to determine if the test was 

reproducible.  Reference measurement instruments were used to 

ensure that the environment and illumination were identical.  The 

results are shown in Table 3 using the same method of comparing 

systems as described earlier.  It was found that in a majority of 

cases the samples in the Ci3000 faded faster than in the Ci4000.  

For example, system A1 cyan faded 50% as much in the Ci4000 as 

in the Ci3000 when compared at equivalent test times, sample 

temperature, light intensity, %RH, and so forth. 
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Figure 1.  Air temperature and %RH measurements during test in Ci4000 with 

refrigeration active. 

 
 

Atlas Ci4000 without Refrigeration
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Figure 2.  Air temperature and %RH measurements during test in Ci4000 with 

refrigeration turned off (using chilled water instead). 
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There is a critical piece of information that has thus far been 

omitted in the test description that explains this shocking 

discrepancy: the Ci4000 is located in an environmentally 

controlled lab with extensive air filtering; the Ci3000 is not.  Table 

4 shows fade data from experiments of these same systems after 

only 25 PPM-hours of ozone exposure.  And ozone is just one of 

several possible air contaminants that may have influenced the 

results in the Ci3000.  The tests described in this paper were 

conducted in the summer of 2009.  A follow up test in the Ci3000 

during the winter of 2010 repeated the results seen earlier.  And 

since ozone levels are lower in the winter than the summer, it 

suggests that other air contaminants are involved. 

Conclusion 
Environmental control is a key component to repeatable and 

reproducible test results in Xenon light stability testing for image 

permanence.  Just a 10C increase in sample temperature resulted in 

large increases in fade rates for many types of inkjet print samples. 

Moreover, maintaining air quality was found to be another 

key requirement in Xenon light stability testing.  Using unfiltered 

air confounds test results by compounding multiple fade 

mechanisms.  Recent follow-up testing has confirmed that by 

eliminating airflow and its potential contaminants it is possible to 

reconcile the test data between Xenon test chambers located in 

different labs—one with filtered air, one with unfiltered air.  The 

details of that study will be the topic of a future paper. 

Lexmark is acquiring a larger Atlas Ci5000 Xenon Weather-

Ometer in the summer of 2010, thus freeing the Ci4000 for 

additional exploratory research into the impact of environment on 

print sample longevity. 
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Table 2.  Sample fade rate at 25C compared to 35C in Ci4000. 

ID Cyan Magenta Yellow

A1 70% 82% 101%

B1 59% 59% 42%

C1 66% 68% 56%

D1 58% 86% 89%

E2 68% 84% 77%

F2 79% 65% 68%

G2 69% 71% 71%

H3 71% 68% 81%

J4 76% 98% 75%

K5 52% 66% 88%

M5 NA 71% 61%

P4 77% 92% 90%

Ci4000:  25C vs. 35C

Comparative Fade Rate at Consistent Time

 
 

Table 3.  Sample fade in Ci4000 compared to Ci3000 at 35C. 

ID Cyan Magenta Yellow

A1 49% 68% 49%

B1 23% 52% 103%

C1 25% 50% 99%

D1 67% 87% 70%

E2 36% 101% 106%

F2 62% 91% 75%

G2 67% 101% 92%

H3 53% 88% 110%

J4 43% 88% 72%

K5 39% 85% 99%

Comparative Fade Rate at Consistent Time

Ci4000 vs. Ci3000 at 35C

 
 

Table 4.  Sample fade after 25 PPM-hours ozone exposure. 

ID Cyan Magenta Yellow

A1 41.2% 36.0% 7.6%

B1 3.2% 1.9% 1.1%

C1 6.6% 4.5% 1.1%

D1 22.7% 10.7% 7.3%

E2 3.1% 1.7% 1.0%

F2 40.3% 48.1% 11.7%

G2 6.7% 1.9% 2.2%

H3 8.9% 2.5% 2.0%

J4 10.7% 3.0% 12.8%

K5 2.0% 1.6% 1.0%

Ozone Sensitivity

% Fade at 25 PPM-hours
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