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Abstract 
Investigation into ozone testing has shown that print samples 

may be subject to ozone reciprocity failure.  Many print samples in 

accelerated ozone testing fade faster at lower ozone 

concentrations in comparison to fade rates in tests run at higher 

concentrations to the same cumulative ozone exposures.  In 

contrast to this trend, samples often faded more slowly in ambient 

air compared to the accelerated tests.  Separate research had 

shown that ozone test results are sensitive to dry time, with longer 

drying typically improving image stability.  This has implications 

for testing in ambient air, because the effective dry time of the 

print samples is increased due to the length of the test.  This study 

focused on understanding how dry time may interact with ozone 

reciprocity failure and thereby explain the contrary trends 

observed. 

Introduction 
A study published last year investigated whether accelerated 

ozone tests could accurately predict performance in ambient air 

[1].  As part of that study, accelerated tests were run at two 

different ozone concentrations: 5 PPM and 0.5 PPM.  Comparing 

the data at equivalent cumulative exposures found that many print 

systems faded more at the lower ozone concentration than at the 

higher level.  However, that trend didn’t hold as consistently when 

comparing to the ambient ozone exposure which averaged less 

than 11 ppb.  Instead of fading more as would have been predicted 

from the accelerated tests, many samples faded less at ambient than 

in either of the accelerated tests. 

At the time the paper was written it was thought that the 

slightly higher humidity in the ambient test had caused ink 

migration, thus increasing the optical density and negating part of 

the ozone fading.  While a reasonable theory, and likely 

contributing to some of the observed behavior, it also fell short of 

fully explaining the data. 

It was also known from prior research that ozone testing is 

highly susceptible to dry time, with longer dry times often 

improving the ozone stability of inkjet print samples [2].  The 

ambient test had taken over 3 months to finish, while the 

accelerated tests only took a few weeks to complete.  In effect, the 

samples in the ambient test were still ‘drying’ before receiving 

enough ozone exposure to significantly fade the samples, thus the 

‘effective dry time’ of the ambient test was much longer than the 

accelerated tests.  Could this longer ‘effective dry time’ be 

responsible for the lower fade rates observed in the ambient test?  

This paper investigates these interactions and whether longer dry 

times can alter the conclusions drawn from ozone reciprocity 

testing. 

Experiment 
The method of studying the influence of dry time on ozone 

reciprocity failure was nearly identical to the previous study.  As 

before, all samples were printed at the same time.  From these 

samples the following tests were run: 

• 5 PPM ozone testing with 2-week dry time 

• 0.5 PPM ozone testing with 2-week dry time 

• ambient air testing with 2-week dry time 

• 5 PPM ozone testing with 6-week dry time 

• 0.5 PPM ozone testing with 6-week dry time 

The ambient air test was comparable to the previous year’s test 

except the average ozone level was 8.5 ppb and required just over 

4 months to complete. 

The 5 PPM and 0.5 PPM tests were started within a day of 

each other and each test alternated time in the test chamber at their 

respective ozone concentrations.  This approach minimized any 

difference in dry time between the accelerated tests while using 

samples that had all been prepared at the same time. 

Test samples were evaluated from 12 unique systems, and 

most are different from those investigated in the previous study.  

Inks are identified by the letters A through P and media by the 

numbers 1 through 5.  Pigment and dye based inks were printed on 

porous photo papers recommended by their respective 

manufacturers. 

Results and Discussion 
As in the previous study, the results will be compared at the 

same cumulative ozone exposure of 25 PPM-hours.  Table 1 shows 

cyan patch density change from each of the three ozone tests with a 

2-week dry time.  The first observation is that the fade rate at 5 

PPM is less than the fade rate at 0.5 PPM for all the systems 

tested.  Three of the four pigment ink systems, shown with grayed 

cells, could be argued to have equivalent fade based just on this 

data; however, a comparison at 250 PPM-hours shown in Table 2 

reveals an increasing gap between the fade rates.  This reciprocity 

failure between 5 PPM and 0.5 PPM ozone for cyan patches agrees 

with data collected in the previous study. 

Table 1.  Cyan patch density change at 25 PPM-hours 

cumulative ozone exposure with 2-week dry time for all tests. 

Cyan

System 5 PPM 0.5 PPM Ambient

A1 -37.4% -41.2% -39.5%

B1 -2.8% -3.2% -4.4%

C1 -5.7% -6.6% -10.0%

D1 -20.7% -22.7% -18.4%

E2 -2.8% -3.1% -4.5%

F2 -36.0% -40.3% -32.3%

G2 -6.1% -6.7% -4.8%

H3 -7.1% -8.9% -7.1%

J4 -8.9% -10.7% -5.7%

K5 -1.5% -2.1% -1.0%

M5 -2.8% -2.9% -3.8%

P4 -3.7% -4.2% -2.0%

25 PPM-hours
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The second observation from Table 1 is that for pigment inks 

the fade rate in ambient air continues the inverse relationship trend 

(increasing fade with decreasing concentration) seen between the 

5PPM and 0.5 PPM tests.  The data from the previous study did 

not reveal such a stark contrast as it only included one pigment 

ink.  The previous study had also suggested that ink migration due 

to higher humidity in the ambient air test was responsible for less 

fading.  Given that pigment inks are not affected by humidity 

migration, the data here would support that theory—except that 

cyan dye inks are also not generally susceptible to ink migration. 

Table 2. Cyan patch density change at 250 PPM-hours 

cumulative ozone exposure. 

Cyan

System 5 PPM 0.5 PPM

A1 -63.5% -68.2%

B1 -6.4% -7.6%

C1 -14.4% -17.0%

D1 -44.8% -48.2%

E2 -8.6% -10.1%

F2 -64.9% -69.8%

G2 -18.4% -20.7%

H3 -23.1% -30.5%

J4 -31.8% -37.5%

K5 -8.5% -12.4%

M5 -6.9% -8.3%

P4 -14.3% -19.4%

250 PPM-hours

 
 

To examine whether dry time alters the reciprocity 

relationship, Table 3 substitutes in the 6-week dry time accelerated 

test data in place of the 2-week dry time data.  As expected, the 

samples in the accelerated tests faded less with longer dry time.  

This amplified the reciprocity failure for the pigment ink systems 

when compared with the ambient air results.  It also changed the 

observed reciprocity trends for some of the dye ink systems.  For 

example, system A1 ambient air fade had originally been between 

the levels observed from the 5 PPM and 0.5 PPM tests, but when 

the dry time was extended to 6 weeks the ambient air fade result is 

much greater than either accelerated test.  The trend reversal is not 

as apparent for systems such as G2, which went from much less 

fading in ambient air to about the same level of fading in ambient 

air as compared to the accelerated tests.  One possible reason for 

this outcome is that the 6-week dry time for the accelerated tests 

was insufficient to match the effective dry time of the ambient air 

test.  Yet there is one further explanation as to why the ambient air 

fade may still be the same or less than the accelerated tests.  The 

average temperature of the ambient air test was 21.4C, which was 

less than the average temperature of the accelerated tests at 23C.  It 

is known from previous work that ozone fading can be 

significantly reduced with a temperature that is 4C colder [3].  

What is not known is the sensitivity of the ozone fading of these 

inks to the narrower temperature difference in this testing. 

Table 3. Cyan patch density change at 25 PPM-hours 

cumulative ozone exposure with 6-week dry time for 

accelerated tests. 

Cyan

System 5 PPM 0.5 PPM Ambient

A1 -31.9% -33.7% -39.5%

B1 -1.8% -2.3% -4.4%

C1 -4.6% -5.1% -10.0%

D1 -17.3% -18.8% -18.4%

E2 -2.7% -2.9% -4.5%

F2 -28.8% -30.7% -32.3%

G2 -4.8% -5.3% -4.8%

H3 -7.0% -7.5% -7.1%

J4 -8.8% -10.4% -5.7%

K5 -1.4% -1.7% -1.0%

M5 -2.4% -2.7% -3.8%

P4 -3.5% -3.9% -2.0%

25 PPM-hours

 
 

 

The magenta patch density change for the three ozone tests 

having a 2-week dry time is shown in Table 4.  In contrast to the 

cyan inks, at 25 PPM-hours of ozone exposure only half of the 

magenta inks show any discernible reciprocity failure between the 

5 and 0.5 PPM ozone concentrations.  However, when this is 

extended to 250 PPM-hours of ozone exposure, as shown in Table 

5, then reciprocity failure is observed in all but two of the systems.  

Special note should be taken of system F2, which at 250 PPM-

hours had nearly faded to white.  Although the density change at 

this exposure was comparable for the two ozone levels, it was 

fading faster at 0.5 PPM during an earlier part of the test.  This 

illustrates the futility of attempting to draw distinctions between 

two test patches that have both faded more than 60%—all samples 

will eventually fade to paper white after enough ozone exposure.  

Also in contrast to the cyan pigment inks, only one of the magenta 

pigments inks, system E2, is showing slightly greater ambient air 

fade than the accelerated tests. 

 

Table 4. Magenta patch density change at 25 PPM-hours 

cumulative ozone exposure with 2-week dry time for all tests. 

Magenta

System 5 PPM 0.5 PPM Ambient

A1 -33.4% -36.0% -26.8%

B1 -1.8% -1.9% -0.4%

C1 -4.3% -4.5% -4.2%

D1 -9.5% -10.7% -7.4%

E2 -1.9% -1.7% -2.4%

F2 -45.0% -48.1% -34.1%

G2 -1.9% -1.9% -1.2%

H3 -2.5% -2.5% -2.4%

J4 -2.7% -3.0% -1.2%

K5 -1.2% -1.7% -1.3%

M5 -3.9% -4.0% -3.7%

P4 -1.7% -2.0% -0.9%

25 PPM-hours
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Table 5. Magenta patch density change at 250 PPM-hours 

cumulative ozone exposure. 

Magenta

System 5 PPM 0.5 PPM

A1 -73.5% -76.1%

B1 -3.8% -4.3%

C1 -9.0% -9.5%

D1 -40.7% -44.2%

E2 -6.0% -6.1%

F2 -81.8% -81.8%

G2 -12.8% -13.7%

H3 -13.0% -14.1%

J4 -18.7% -20.9%

K5 -8.8% -12.1%

M5 -7.6% -8.5%

P4 -9.8% -11.6%

250 PPM-hours

 
 

 

To see whether dry time impacts magenta inks in the same 

way that it affects the cyan inks, the 6-week dry time accelerated 

test results are compared to the ambient air test data in Table 6.  

Once again the longer dry time resulted in a reduction in the ozone 

fade rates of many of the accelerated test samples, but the 

magnitude of the reduction was insufficient to achieve a reversal in 

some of the ozone reciprocity trends observed earlier. The C1 

system is one case in which, with the extended dry time in the 

accelerated tests, the ambient condition resulted in significantly 

more fade. The two systems with the largest deviation between 

ambient air and accelerated tests, A1 and F2, also happen to be 

most sensitive to humidity.  These systems showed a density 

increase of 13.9% and 9.4%, respectively, when exposed at 

25C/85%RH for 3 days.  The lower average ambient air 

temperature may explain the rest of the discrepancy from the 

accelerated tests. 

 

Table 6. Magenta patch density change at 25 PPM-hours 

cumulative ozone exposure with 6-week dry time for 

accelerated tests. 

Magenta

System 5 PPM 0.5 PPM Ambient

A1 -29.6% -30.7% -26.8%

B1 -1.1% -0.9% -0.4%

C1 -2.5% -2.5% -4.2%

D1 -8.6% -9.0% -7.4%

E2 -2.0% -1.8% -2.4%

F2 -39.2% -40.8% -34.1%

G2 -1.6% -1.8% -1.2%

H3 -2.0% -1.9% -2.4%

J4 -2.6% -2.6% -1.2%

K5 -1.5% -1.5% -1.3%

M5 -3.5% -3.4% -3.7%

P4 -1.6% -1.6% -0.9%

25 PPM-hours

 
 

The yellow patch density change for the three ozone tests 

having a 2-week dry time is shown in Table 7.  In general the 

yellow inks were much more stable in ozone and trends between 

the accelerated tests are hard to detect at 25 PPM-hours of ozone 

exposure.  The yellow ink ambient air data deviates from the 

accelerated tests far more than the other ink colorants.  Two of the 

pigment ink colorants, B1 and C1, showed greater density at the 

end of the test in the ambient condition than at the beginning.  This 

cannot be explained by humidity or by paper yellowing for these 

systems. 

 

Table 7. Yellow patch density change at 25 PPM-hours 

cumulative ozone exposure with 2-week dry time for all tests. 

Yellow

System 5 PPM 0.5 PPM Ambient

A1 -10.0% -7.6% -0.3%

B1 -0.9% -1.1% 1.6%

C1 -1.3% -1.1% 1.6%

D1 -7.1% -7.3% -3.3%

E2 -1.0% -1.0% -0.4%

F2 -11.2% -11.7% -6.0%

G2 -2.0% -2.2% -0.9%

H3 -1.7% -2.0% -1.2%

J4 -11.2% -12.8% -5.1%

K5 -0.7% -1.0% -0.2%

M5 -0.2% -0.2% -0.5%

P4 -2.6% -3.0% -1.5%

25 PPM-hours

 
 

 

Extending the ozone exposure to 250 PPM-hours, as shown 

in Table 8, reveals that half of the systems faded more at an ozone 

level of 0.5 PPM than at 5 PPM.   

 

Table 8. Yellow patch density change at 250 PPM-hours 

cumulative ozone exposure. 

Yellow

System 5 PPM 0.5 PPM

A1 -41.4% -41.2%

B1 -2.1% -2.4%

C1 -2.7% -2.4%

D1 -30.5% -32.0%

E2 -2.8% -2.6%

F2 -41.2% -41.3%

G2 -17.2% -19.1%

H3 -10.1% -11.2%

J4 -41.2% -48.5%

K5 -4.2% -5.1%

M5 -0.7% -0.5%

P4 -12.8% -15.2%

250 PPM-hours
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The yellow ink accelerated test data having a 6-week dry time 

is compared with the ambient air fade data in Table 9.  Even with 

the reduced fading at the longer dry time, the ambient air data is 

still fading less than the accelerated tests for most of the ink 

systems.  It is known that if systems A1, D1, F2, H3, J4 and P4 are 

exposed to high humidity that their density can increase enough to 

obscure any ozone reciprocity trends for this ambient air test.  The 

humidity sensitivity of G2 and K5 are unknown; B1, C1 and E2 

are not sensitive to humidity.  Likewise, as with the other 

colorants, the lower average temperature of the ambient air test 

may be a factor. 

 

Table 9. Yellow patch density change at 25 PPM-hours 

cumulative ozone exposure with 6-week dry time for 

accelerated tests. 

Yellow

System 5 PPM 0.5 PPM Ambient

A1 -7.5% -7.5% -0.3%

B1 -0.5% -0.6% 1.6%

C1 -0.5% -0.4% 1.6%

D1 -5.4% -5.9% -3.3%

E2 -0.9% -0.9% -0.4%

F2 -6.8% -7.7% -6.0%

G2 -1.4% -1.7% -0.9%

H3 -1.2% -1.1% -1.2%

J4 -10.3% -11.8% -5.1%

K5 -0.9% -1.1% -0.2%

M5 -0.1% -0.1% -0.5%

P4 -2.3% -2.8% -1.5%

25 PPM-hours

 
 

Conclusion 
A trend often observed during accelerated ozone testing is 

that fading increases when the ozone test concentration is 

decreased for the same cumulative ozone exposure.  However, the 

ambient air test often showed less fading than the accelerated tests, 

thereby not following the same trend set forth by the accelerated 

tests. 

The purpose of this study was to determine if dry time can 

influence the conclusions drawn from ozone reciprocity testing 

because of the extremely long test times required for testing at low 

ozone concentrations.  It was found that many print samples faded 

less in ozone by increasing the dry time of the accelerated tests 

from 2 weeks to 6 weeks.  This reduction in ozone fading brought 

the ambient air data into closer alignment with the observed trends 

between accelerated tests at different ozone concentrations.  Thus 

dry time can alter the conclusions made from reciprocity testing. 

Unfortunately this adjustment was not sufficient to resolve all of 

the discrepancies between the accelerated tests and the ambient 

tests. 

Among the systems tested, the reciprocity failure trends were 

most easily detected with cyan inks, especially the cyan pigment 

inks.  Moreover, increasing the dry time resulted in exceptionally 

consistent data trends between the ozone test concentrations as 

shown in Table 3.  The magenta and yellow ink colorants had more 

systems where the ambient air fade data was not consistent with 

the accelerated test data.  Some of these cases may be caused by 

humidity induced ink migration while the remainder may be from 

the lower test temperature of the ambient air fade.  Further work is 

needed to quantify this impact. 
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