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Abstract 
With the spectrum of inkjet printing applications broadening, 

novel ink formulations and demanding application requirements 
continuously challenge printhead designs.  To succeed in the 
industrial inkjet printing business, printhead manufacturers need 
to systematically integrate and qualify printhead-ink combinations 
optimally suited to specified application targets.  This paper 
presents the approach taken by FUJIFILM Dimatix, Inc. in 
achieving this goal.  

Introduction  
As piezoelectric drop-on-demand (DOD) inkjet printing 

technology continues its expansion into image and documentation 
printing, it has also penetrated into industrial printing domains 
such as printing on textiles, ceramic tiles, food, and other very 
exciting areas [1-13].   

The basic operation of piezoelectric DOD technology 
involves managing the ejection of little droplets, less than 100 μm 
in diameter, in a desired fashion accurately and reliably onto a 
targeted location.  The fundamental aspects of DOD drop 
formation processes, including liquid ejection, capillary breakup, 
thread retraction, satellite formation, etc., have been studied over 
the last two decades in great detail [14-18].  The basic mechanisms 
underlying the operation of piezoelectric DOD inkjet devices also 
have been studied extensively [19, 20].  The fluid properties 
(surface tension, viscosity, and bulk modulus) and the operating 
conditions (actuating waveform, jetting frequency, jetting voltage, 
and temperature) were found to greatly affect DOD drop formation 
process, including the evolution of ejected ligament, nozzle plate 
wetting, jet straightness, and sustainability [21-29, 33-36].  The 
studies have also shown that drop formation characteristics are 
highly dependent on inkjet ink formulation and printhead operating 
conditions.  The differences in drop formation characteristics are 
significant from one printhead-ink combination to the other.  Thus, 
the understanding of printhead-ink interaction is critical to fulfill 
the image quality requirement of each appliaction.   

Application targets dictate printhead capability and ink 
functionality.  One application may require a printhead-ink 
combination to obtain higher productivity with acceptable image 
quality, while another may demand superior material addressing 
accuracy with reasonable throughput.  A faster printing speed may 
suggest the usage of a faster drying and/or curing ink.  However, 
that same choice may lead to a shorter open time and a narrower 
operating window for a given printhead design.   

In order to reach to a balance between jettability and 
functionality, a successful integration of a printhead-ink 
combination requires 1) working from both ends, namely, 
printhead design and ink formulation, to satisfy the application 
needs, and 2) qualifying the printhead-ink combination based on 
the application requirement as it evolves during each step of the 
technology development process.   

This paper focuses on the second issue mentioned above in 
terms of the instrumentation and methodology developed at 

FUJIFILM Dimatix, Inc. to study and analyze the performance of  
printhead-ink combinations.  These techniques are capable of 
qualifying printhead and ink designs as well as recommending 
solutions for individual customers’ needs.   

This paper starts with a discussion on why different inks must 
be treated differently, follows with the basic principles guiding 
how we approach the printhead-ink interaction, and presents the 
data and information used to qualify a printhead-ink combination 
using various kinds of tools.        

Why Inks Behave Differently     
The jetting performance of an inkjet ink is defined here by 

four major components: drop formation, nozzle plate wetting, jet 
straightness, and sustainability.  All the jetting conditions, 
including actuating waveform, jetting voltage, jetting frequency, 
image pattern, and temperature, have effects on the jetting 
performance.  It was found that under the same jetting condition, 
inks with similar static fluid properties often behave differently 
compared to each other.  This is due to the complexity of 
piezoelectric DOD drop formation process.     

For the DOD drop formation process, the length scale is ~ 
O(10 μm), confined by the nozzle size, and the time scale is ~ 
O(100 μs), depending on the jetting frequency.  In this process, the 
shear rate can be as high as 106 s-1 [1, 30] and the rate of surface 
dilatational deformation can be as high as 105 s-1 [30].  Under such 
conditions, inkjet inks are typically not Newtonian fluids and do 
not have constant interfacial energies when contacting with other 
phases.  Due to the existence of microstructures formed by pigment 
particles, latex particles, polymers (with varied weight fraction, 
molecular weight, molecular structure and conformation in 
solution), surfactant, etc., inkjet inks may exhibit various non-
Newtonian and dynamic interfacial behaviors, such as dependence 
of viscosity on shear rate [30] and/or shearing time [30], 
viscoelasticity [29, 31, 32], varying extensional viscosity [32], 
dynamic surface tension [33] and interfacial energy [34].  
Moreover, at the nozzle, solvent evaporation (such as in solvent 
and aqueous ink) and polymerization (such as in UV-curable ink) 
of one or multiple components of the ink may change ink stability 
and, thus, fluidic and interfacial properties [35, 36].  Nozzle plate 
wetting, which is closely related to printhead operating conditions 
and ink properties, is found to affect not only the drop formation 
process but also jet reliability [33-36].  Speed of sound of the ink 
varies depending on the jetting temperature and ink formulation, 
which leads to differences in printhead frequency response.   

Thus, the jetting performance is hardly repeatable among 
various ink formulations.  

Defining Printhead-Ink Interaction     
Printhead and ink are typically studied separately.  For 

printheads, their performance may be qualified using a simple 
Newtonian fluid, which is a common practice in printhead R&D 
and manufacturing qualification processes.  This approach is 
economically sound and has been proven to reliably provide data 
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for quality control.  For inkjet inks, static fluidic properties 
(primarily, viscosity and surface tension) are characterized as 
baselines for matching the requirements of the printhead 
specification.  Information obtained from above two approaches 
may be used as guidelines for setting expectations and explaining 
the jetting performance of real inks.   

However, as discussed previously, unexpected jetting 
performance is often observed for real inks, leading people to 
study the dynamic properties of inkjet inks and their effects on 
jetting performance.  Wang et al. [37] developed a capillary 
viscometer specified for measuring high shear-rate viscosity of 
inkjet inks.  They found that shear viscosity of inkjet inks 
decreases significantly at high shear rates depending on particle 
loading.  The drop formation characteristics of a simple Newtonian 
liquid were compared with that of a colloidal suspension system 
which has the same low-shear-rate viscosity, but significantly 
different high-shear-rate viscosity.  However, it was found that the 
drop formation dynamics of the pigment-loaded suspension was 
similar to that of a Newtonian liquid.  Hoath S. and Martin, G. [29] 
utilized piezoelastic axial vibrator (PAV) [38] to measure the high-
frequency rheological properties of model viscoelastic fluids 
containing linear polymers with various molecular weights and 
studied the jetting performance of those fluids.  They found that, 
although the jetting behavior was well correlated with the high 
frequency rheological properties measured at 5kHz, it showed no 
correlation with low shear-rate conditions.  Vadillo et al. [31] also 
utilized PAV to measure the high-frequency response of model 
inkjet inks and they used the “Cambridge Trimaster” [32] to 
characterize the high speed stretching and break-up behavior of 
those fluids.  Both apparatuses were found to provide valuable data 
to correlate the coupling of inkjet rheology and jetting properties.  
However, no commercially available instrument is capable of 
measuring dynamic surface tension at the surface dilatational rate 
encountered in DOD drop formation process.  de Jong et al. [33] 
studied nozzle plate wetting and attributed the observed Maragoni 
flow to an effective lower surfactant concentration of the ink 
around the nozzle while jetting occurs.  

The discrepancy of jetting performance between simple 
Newtonian fluids and real inks is fundamentally due to the 
following: 1) the microstructures in real inks response to bulk 
motions, which leads to dynamic bulk and interfacial properties; 2) 
such a response takes time under sufficiently high hydrodynamic 
motions and relaxation of microstructure occurs once external 
forces disappear; and 3) the jetting process is not only short in both 
length and time scales, but also transient without steady state flow 
profiles.  The microstructural rearrangement and relaxation from 
one ink to another vary, leading to differences in jetting 
performance.  And such an existence may or may not be observed 
by instrumentation, as the response time of the instrumentation 
may be longer than the time duration of the microstructural 
rearrangement itself, and the transient flow profile in the jetting 
process is hardly reproducible in the flow characterization 
processes.  Moreover, the material properties, geometries and 
dimensions of the fluid path are different from one printhead to 
another.  The stability of the ink may be time dependent and varies 
among ink formulations.  One ink may be able to flow through one 
printhead and be jettable for a long period of time; however, it may 
lead to clogging or even corrosion in another printhead.  Thus, it is 

more effective and trustworthy to study the printhead and ink 
interaction directly through jetting.     

Characterization of Drop Formation  
The raw data of DOD drop formation process are obtained by 

visualizing the evolution of ejected liquid ligaments from single 
inkjet nozzles under given jetting conditions.  Depending on the 
requirement of information extracted from the raw images, the 
resolution of the images and, thus, the capability of the equipment 
for obtaining the images vary.  Based on the flash photography 
technique, FUJIFILM Dimatix, Inc. has developed a group of 
workstations capable of visualizing DOD drop formation processes 
(see Figure 1 as an example) with different levels of spatial and 
temporal resolutions.  The information obtained may include the 
following:  

1) For single nozzle: primary drop velocity, tail velocity, 
 number of satellites, drop volume and mass (primary drop and 
 satellites), nozzle break-up time, tail break-up details (e.g.,  mists), 
drop coalescence, and meniscus motion; 

2) For a row of nozzles: uniformity of drop mass and drop 
 velocity from nozzle to nozzle; 

3) For multiple rows of nozzles: uniformity of drop mass and 
 drop velocity from row to row.   
  Actuating waveform, jetting voltage and frequency, crosstalk, 
and temperature have great effects on these aspects.  Also, jetting 
may become inconsistent or unstable after a period of time, which 
is also part of data collection in characterizing DOD drop 
formation.  In the mean time, jetting conditions are developed to 
optimize the DOD drop formation process oriented toward 
application requirements.  The data and observations collected 
for each printhead-ink combination become part of the knowledge 
base for accelerating the future integration of new printhead-ink 
combinations.      

 

 
Figure 1. Example of VersadropTM technology.  Three different drop sizes are 
generated for greyscale printing.  

Characterization of Nozzle Plate Wetting  
Normally, before operation, a maintenance cycle is performed 

and the nozzle plate is cleaned.  Once jetting starts, nozzle plate 
wetting (see Figure 2 as an example) begins to develop.  Surface 
wetting may affect drop formation, jet straightness, and 
sustainability.  To solve this problem, one treatment is to apply a 
non-wetting coating on the nozzle plate to increase the contact 
angle between nozzle plate and inkjet ink, so that the wetting may 

NIP26 and Digital Fabrication 2010     Technical Program and Proceedings 29



 

 

be reduced.  However, non-wetting coatings have one major issue: 
their stability may be sensitive to ink formulation, making it hard 
to achieve long-term durability.   

Direct visualization of wetting formation is required to 
facilitate the tune-up process.  The qualitative observations are also 
used as a reference to explain other jetting performances including 
drop formation, jet straightness, and sustainability.  It was found 
that by modifying jetting conditions (actuating waveform, jetting 
voltage and frequency, and jetting temperature) and ink 
formulation, surface wetting formation can be controlled and 
improved to enable desired jetting performance.  It was also found 
that different inks with similar static surface tension may behave 
drastically differently on the same printhead nozzle plate under the 
same jetting conditions.  Chemistry of the inkjet ink plays a great 
role in determining wetting formation dynamics.  The interfacial 
properties and characteristics of the nozzle plate also dictate the 
phenomenon.  By utilizing silicon as the base material for 
printhead fabrication, the versatility of physical and chemical 
surface modification enables the control on surface wetting 
characteristics toward more favorable scenarios.   

The fundamental understanding of the mechanism of surface 
wetting formation under varied jetting conditions and ink 
formulations is being developed.  The awareness and information 
collected for its existence facilitate the integration of printhead-ink 
combinations.   

 

            
   (a)       (b) 
Figure 2. An example of nozzle plate wetting formation. Image (a) was taken 
right after nozzles started jetting and image (b) was taken after jetting for a 
period of time.   

Characterization of Jet Straightness  
Jet straightness (see Figure 3 as an example) defines how 

accurately the ejected fluid addresses the targeted location on the 
substrate and is evaluated through image quality assessment.  Jet 
straightness needs to be well controlled for printer manufacturing, 
so that multiple printheads can print evenly spaced lines when 
being mounted in one print bar.   

Jet straightness is defined as the orthogonality of the flying 
trajectory of the ejected ligament relative to the nozzle plate.  Two 
kinds of jet straightness exist, which are static and transient jet 
straightness.  Static jet straightness is independent of jetting 
conditions and is proven to be mostly related to the intrinsic 
concentricity of the inkjet nozzle and other external factors, such 
as nozzle damage, non-removable nozzle contamination or 
imperfections in or around the nozzle.  Different approaches are 
used in FUJIFILM Dimatix, Inc. to measure static straightness for 
qualifying printhead nozzle manufacturing technology, including 
visualization of the ejected drops and measurement of lines printed 
on paper with the printhead oriented with an angle.   

Some printhead nozzle fabrication technologies are less 
capable of controlling the nozzle concentricity, leading to poor jet 
straightness and deteriorated image quality.  It was found that a 
slight error in concentricity between the top and bottom openings 
of the inkjet nozzle can generate an unacceptable static jet 
straightness error, demonstrating a high tolerance for nozzle 
geometry control.  It was found that the utilization of silicon as the 
base material for nozzle fabrication enables better control on both 
the concentricity of the nozzle and the uniformity of nozzle size 
across a nozzle plate, so that not only jet straightness but also drop 
speed uniformity across the whole printhead are highly controlled.   

Transient jet straightness is defined as when a jet that is 
straight immediately after a maintenance cycle becomes crooked 
after a period of jetting.  These jets may or may not self-recover to 
straight jetting and usually, once transient straightness occurs, it 
becomes worse and worse over time.  Various things can cause this 
problem, including nozzle plate wetting formation, accumulation 
of particles or dirt around the nozzle, etc. [34, 36].   Also, after a 
maintenance cycle, transient jet straightness may be deteriorated 
by the so called “first drop problem” [28] for both solvent and 
aqueous ink, and sometimes even UV ink.  Continuously 
refreshing the base fluid around the nozzle and supplying base 
fluid to compensate the loss of solvent due to evaporation can 
reduce and even eliminate “first drop problem”.  It is important to 
measure jet straightness as a function of jetting time.  To achieve 
this measurement, two approaches are used.  One is to print images 
onto paper (see Figure 4 as an example) and the other is to 
visualize the ejected drops using a camera.  The latter more 
environmentally friendly approach eliminates the need to use  
paper and enables unlimited test time.  The camera can also be 
used to monitor more than one printhead’s performance 
automatically at the same time.      

  

          
   (a)       (b) 
Figure 3. Straight jetting vs. non-straight jetting.   

 
Figure 4. Jet straightness measurement by printing lines on paper and 
defining the spacing between neighboring lines.     
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Characterization of Jetting Sustainability 
Jetting sustainability involves the ability of the jet to print 

continuously.  Characterization of sustainability requires 
measuring the percentage of jets that remain firing after a defined 
period of time under certain jetting conditions.  If a jet fails to fire 
due to, for example, rectified diffusion, nozzle surface wetting, and 
nozzle contamination, it is important to know under what 
conditions this will happen and how to reduce nozzle failure by 
adjusting ink properties and/or jetting conditions.  The two 
approaches used for measuring jet straightness mentioned above 
may also be used for quantifying sustainability. 

Each application demands a specified target for sustainability.  
Thus, it is important to plan a sustainability test oriented toward 
the application requirements.  The printed image may have one 
drop size for all nozzles with a certain duty cycle or multiple drop 
sizes (greyscale printing) stochastically blended.  Sustainability 
tests need to be done over a population of printheads for different 
colors in one ink set, e.g., CMYK.  The amount of work required 
to qualify the sustainability for a printhead/ink combination could 
be so large that an automatic test routine for multiple printheads at 
the same time is required.  We have developed workstations 
capable of monitoring the sustainability performance of multiple 
printheads for unlimited test time without using paper.     

Conclusions  
Printhead-ink combinations need to be qualified for 

application requirements.  Due to the unique characteristics of 
piezoelectric DOD drop formation process, different inks with 
similar static fluidic properties may behave differently under the 
same jetting conditions.  Thus, the qualification process has to be 
done through jetting.  Such a process involves the following four 
aspects: DOD drop formation dynamics, nozzle plate wetting 
formation, jet straightness, and jetting sustainability.  
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