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Abstract 
Theoretical predictions of the diameters of continuous ink-

jets downstream of long nozzles are generalized to include the 

important cases of ink-jet fluids and shorter nozzles where the 

velocity profile at the nozzle exit is undeveloped (non-parabolic). 

Comparisons of the new predictions with experiments and 

simulations are made for fairly long nozzles with tapered profiles 

and short nozzles with conical profiles; experimental and 

simulated profiles are also compared downstream of the nozzle 

exit for both industrial and large scale ink-jet print heads. 

Precise measurements of the un-modulated jet diameters 

downstream of the nozzle exit can set really useful limits to the 

possible shapes of the flow profile right at the nozzle exit, and in 

particular allow some assessment of the axial velocity gradients 

and fluid shear rates at the nozzle exit where direct speed 

measurement is usually impractical. 

Simulations allow further study of the relaxation of the 

velocity profile downstream of the nozzle exit, and are reported for 

both un-modulated and modulated CIJ jetting. Implications of this 

work include speeding up CIJ simulations, absolute calibration of 

the applied CIJ system modulation, and the likely magnitude of 

dynamic surface tension effects on observed CIJ satellite speeds. 

Relaxation effects in continuous jetting 
Jets of Newtonian fluids emerging in laminar flow from very 

long nozzles are associated with a ‘fully developed’ parabolic 

Poiseuille velocity profile at the nozzle exit, and the relaxation of 

this profile downstream of the nozzle towards a uniform, ‘plug’, 

velocity profile. Within shorter nozzles (as shown in Figure 1), the 

velocity profile does not fully develop, and is not parabolic at the 

exit. An unmodulated continuous ink-jet (CIJ) relaxes downstream 

from the nozzle: its diameter changes from that of the nozzle 

diameter at the exit, towards an equilibrium diameter which 

depends for Newtonian jets on the values of Reynolds and Weber 

number. In industrial CIJ, jet diameters are smaller than the nozzle 

exit diameter. Here we consider theoretical predictions of jet 

profile and diameter relaxation for long and short nozzles, the 

application of recent simulation codes to these nozzles, and related 

experimental results. This provides an insight into conditions 

within other CIJ nozzles based solely on precise measurements of 

unmodulated jet diameters, and also allows the prediction of the 

downstream distances required for full relaxation.  

 
Figure 1: Idealized CIJ nozzle outline (green) with velocity profiles shown as 

red broken lines at the shaped inlet and various locations within and 

downstream from the exit. The velocity profile develops from flat towards the 

parabolic Poiseuille shape, and back again, as the fluid passes through the 

nozzle into the free jet (outlined in blue). Typically the free jet may reduce to ~ 

92% of the nozzle exit diameter. 

Theoretical treatment of relaxation 
Middleman and co-workers published a series of papers [1] 

that treated the basic equations of continuity, momentum and 

energy for a liquid jet issuing from a long nozzle. Their 

axisymmetric approach linked the exit and the downstream jet 

diameters to radial integrals over various powers (n = 1, 2 and 3) 

of the fluid velocity profile at these locations. For nozzle exit 

radius a, and average velocity c, the exit velocity profile was 

assumed to be that given by Poiseuille’s theory, which can be 

expressed by the power law equation (1) with n = 2: 
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Using power law radial profiles with n = 2 imposes an unnecessary 

limitation in the study of relaxation inside real nozzles, since quite 

adequate theories (e.g. [2]) of the velocity profile developed within 

shorter nozzles are available. For a power-law profile, a more 

uniform velocity requires higher n.  

We have modeled Langhaar’s theory [2] for finite length 

nozzles in order to link an empirical power law exit velocity 

profile with the fluid dynamics, the diameter of the nozzle and its 

length. We then generalized the Middleman approach to handle 

power law profiles, as power laws fitted to the Langhaar theory, 

and to other simulation results [3], provide rather simple, good and 

fast representations of the results obtained by using far more 

complex theory and lengthy computation times.  
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Upstream from the nozzle exit 
Our study of relaxation effects downstream of the nozzle 

actually starts upstream, with the relaxation theory for a uniform 

radial velocity profile at the inlet to a short nozzle. In the literature 

[1] a set of ‘power-law fluid’ results for long nozzles were 

corrected later by Gavis. Those power laws are for the fluid 

behavior under shear, whereas our approach focuses on equation 

(1) for a continuous jet. One key implication for the present work 

from the earlier theory [1, 4] is that surface tension has only a 

small effect on the free jet diameter, which suggests that the jet 

diameter can be used to investigate other variables such as the 

velocity profile, fluid viscosity and (for non-Newtonian fluids) 

elasticity. 

Langhaar’s theory [2], which is based on the Navier-Stokes 

equation for the axial component of fluid velocity in the nozzle 

(with radius a), can be used to determine the ratio λ between the 

speed at radius r and the mean axial speed c, at all locations z 

within the straight nozzle section, with a parameter γ depending on 

z alone: 
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The functions I0(x) and I2(x) are the modified Bessel functions of 

the first kind of order 0 and 2 respectively [6]. The axial speed on 

the nozzle axis (r = 0) is defined by λ0 = I0(γ)/I2(γ).  

The parameter γ is a function of (dimensionless) axial position 

s defined by: 

Rea

z
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where Re is the Reynolds number defined by the mean speed c, 

fluid density ρ and viscosity η: 

η
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The relationship between γ and s given numerically by Langhaar’s 

Table 1 shows that the ‘transition length’ required for development 

of the Poiseuille velocity profile is conventionally taken when s is 

sufficient to produce λ0 > 1.98, i.e. within 1% of the value for a 

truly parabolic profile for which λ = 2; then s = 0.23 [1]. We can 

therefore use equations (3) and (4) to determine whether the nozzle 

exit profile is likely to be close to the Poiseuille conditions, and 

use equation (2) when it is not parabolic. 

Figure 2 shows Langhaar’s general results; Figure 3 shows 

the prediction for a short nozzle as typically used for continuous 

inkjets [7].  

Figure 4 shows the profiles for the 2.2 mm long, 2.2mm 

diameter nozzle used in our large scale CIJ experiments [7] 

corresponding to the fluid used in Figure 3. The Poiseuille 

parabolic representation is clearly poor, though a power law, as 

equation (1) with n=5.0, is rather close to the Langhaar profile, 

equation (2), when normalized to the same central value λ0.  

Figure 5 shows the radial profile produced by a simulation of 

the same fluid and nozzle using a code written at Leeds [3], 

together with the power law fit n=4.9 that produced the same 

central velocity. Again, we find that the power law representation 

is a reasonable fit to the simulation, and furthermore the index n is 

very similar to the fit to the Langhaar profile as shown in Figure 4. 

 

 
Figure 2: Data taken from Langhaar Table 1 [2] to show how the parameter γ 

(blue curve) and the central axial speed λ0 (magenta) vary with the 

dimensionless axial distance s defined by equation (3). 

 
Figure 3: Computed values of central axial speed for a large-scale 2.2 mm 

diameter CIJ nozzle, with average initial jet speed 4 m/s, fluid density 1100 

kg/m³ and viscosity 0.032 Pa s. [7] The nozzle length was 2.2 mm, and the 

radial velocity profile is far from parabolic: here  γ ≈ 6.25 . 

 
Figure 4: λ computed from equation (2) for  γ  ≈ 6.25 and the same  fluid 

properties and speed as in Figure 3, compared with the Poiseuille parabolic 

(red broken line) and power law fit from equation (1) with n = 5. Such 

representation of the results from Langhaar’s theory by power law fitting holds 

for other values of γ, and provides a considerable simplification. 
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Figure 5: Simulation of the same system as in Figures 3 and 4, also showing a 

power law fit  from equation (1) with n = 4.9 (blue line) compared with the axial 

speed and radial position derived from the computational model. Near 

agreement of simulation and power law fits extends to theory of equation (2) 

and to Figure 4. 

Figure 6 shows our general method for linking (D/L)Re to γ 

and n, with the dotted lines correlating values quite typical for CIJ. 

 
Figure 6: Fitted power law index n in equation (1) for distributions following 

equation (2) as a function of Langhaar’s γ and the product Re (D/L). Reynolds 

number Re is from equation (4) and the nozzle has diameter D and length L. 

Dashed lines also shown link typical CIJ values of (D/L)Re to γ and n. 

Jet downstream from the nozzle exit 
 We have shown above that power law representations of the 

radial variation of axial speeds at the nozzle exit may be quite 

accurate (within <10% of c), and certainly better than the 

assumption of either parabolic (Poiseuille) or flat (plug flow) 

distributions. We can therefore generalize the model applied by 

Middleman et al [1,4] to relaxation within the jet downstream from 

the exit, by using the power law representation of exit speed 

profile given by equation (1). 

 For fluid flowing from a long nozzle, the ratio X defined by X 

= (downstream jet diameter/nozzle exit diameter, D) has the value 

X = √3/2 = 0.866, according to the original theory [1] with a 

parabolic speed profile at the exit. The pressure difference ∆p 

between fluid in the nozzle exit and that downstream where the jet 

diameter is XD, is determined by the surface tension σ via equation 

(5): 
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The Weber number We defined by equation (6) is usually >>1 for 

typical CIJ conditions. Equations (5) and (6) show that the 

pressure difference ∆p between the exit and the downstream 

locations that is due to surface tension effects will be small, since 

typically 0.866 < X < 1.000 for CIJ, provided that the surface 

tension does not vary along the jet.  

 

 When the nozzles are shorter, with length L and diameter D, 

the jet diameter XD can be expressed as: 
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Equation (7) has been evaluated here using Langhaar’s theory 

[2] in a similar manner to that used by Gavis and Modan [6], 

except that we explicitly present the results as our Figure 7, for X 

as a function of the Reynolds number based on nozzle radius as in 

equation (4). For L/D =1, Langhaar’s γ = 6.353, while the power 

law exponent n = 5.115. For typical fluids that we have jetted 

using industrial CIJ print heads with L/D ≈ 1, Re(D/L) ≈ 160. 

Figure 7 shows that the predicted value for X is typically very close 

to 0.920 for un-modulated CIJ.  

 
Figure 7:Ratio X between downstream jet diameter and nozzle exit diameter 

ratio for short nozzles plotted against the product Re(D/L). For a typical CIJ 

fluid jetted from a nozzle with (L/D) ≈ 1, X ≈ 0.920. 

CIJ diameters as a measure of velocity profile  
We have explicitly shown in Figure 7 how CIJ diameters 

depend on the variable (D/L)Re and in Figure 6 how the same 

variable links to a power law index value that closely mimics the 

exit velocity profile predicted theoretically by Langhaar for short 

straight nozzles. Thus measurements of (un-modulated) jet 

diameter can be closely linked to the exit velocity profile and may 

provide some further information about the geometry of the nozzle. 

Such an approach is valuable as the exit velocity profile is 

normally difficult to access directly by experiments on practical 

systems, whereas jet diameter can be observed and measured 

optically to better than 1%. 
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Simulation of downstream profiles 
Numerical simulation code developed at the University of 

Leeds [3] can be used to predict the velocity distribution and radial 

profiles at different axial locations (z ≥ 0) relative to the nozzle 

exit, and thus allow the relaxation of the velocity profile to be 

described. A useful measure of this profile is the normalized 

velocity range at z as measured by  
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At the nozzle exit, Range(0) = λ0 from equation (2). As the profile 

flattens out, Range(z) tends to 0. The jet diameter also varies, so 

that radial averages and limits for equation (7) will alter as z 

increases. Figures 8 and 9 show some predictions of the range 

from equation (7) and the normalized jet radius for a jet of water 

emerging at 5.66 m/s from nozzle with the geometry of a 100 µm 

(exit) diameter Microdrop® nozzle, for an un-modulated  jet, and 

also for a jet with 2% modulation of the fluid flux. 

 The simulations were performed with and without applied 

modulation in order to investigate the variation of jet break-up 

point with the level of modulation, and also whether jet relaxation 

is influenced by modulation. Comparison of Figures 8 and 9 shows 

the effects of modulation on the range and radial size. The major 

relaxation of the velocity profile remains the same until the overall 

effects produced by the magnitude of the applied modulation, or 

‘noise’, take over at long distances downstream. Further details are 

beyond the scope of this paper. Figure 10 shows other results for 

the relaxation of a free jet.  

Discussion 
For the nozzle exit velocity profile, the good correspondence 

found between fluid flow theory [2] and the results from the 

numerical simulation code [3] provide validation of the latter. 

Representation of the profile by an empirical power law is useful 

for further computation of downstream relaxation effects in other 

fluid jetting applications [8-11]. Prediction of the exit velocity 

profile and diameter for an unmodulated jet directly from the value 

of the product Re(D/L) is very convenient: a useful ‘rule of thumb’ 

for L/D = 1 and Re ≈ 150 is that the power law n ≈ 5 and the jet 

diameter is ~ 0.920 of the nozzle diameter D. 

A summary and numerical investigation of development 

lengths in laminar flow has been presented by Durst et al [12]. 

They conclude that most of the treatments of flow development 

(including that of Langhaar [2]) incorrectly predict a development 

length L proportional to Re. Their best estimate for development 

length is [12]: 

1/1.61.61.6 )(0.0567Re) (0.619 +=
Diameter

Length
 (8) 

Typically Re > 100 for industrial CIJ, so equation (8) would 

predict that Length/Diameter ≈ Re and we can exploit Langhaar’s 

flow results [2] as a guideline. 

If the fluid shows dynamic surface tension differences on the 

timescale of the downstream distance divided by the axial speed c, 

then the pressure difference equation (5) would have to be altered 

to: 
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We have already surmised that dynamic surface tension 

effects might contribute to changes in satellite speeds in CIJ [8]; 

equation (9) provides a route for changing the proposed balance 

between the jet size and the velocity profile for similar Reynolds 

numbers.  It is clear that if the exit nozzle face were wetted, the 

conditions at the exit and downstream jet would be determined not 

simply by the nozzle exit diameter but also be influenced by the 

wetting. In such cases the downstream jet diameter is typically 

greater than the nozzle diameter. The practical significance of this 

is that we are currently unable to predict jet diameters from a 

wetted nozzle. Further work is planned to address this challenge. 

The power law relationship at the nozzle exit may even be 

adapted to mimic the relaxation of the velocity profile downstream. 

This relaxation has proved important [9] for the treatment of 

obliquely colliding fluid jets that have a fixed free length before 

interacting, although until now the assumptions have been that the 

profiles are uniform, parabolic or modified parabolic [10]. We 

suggest that the velocity profile downstream at z may be 

empirically represented by 
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This equation (9) matches the exit velocity profile equation (1) at z 

= 0, where parameters R = a, u(R, 0) = 0 and u(0, 0) = (n + 2)/n. 

Downstream from the exit, the jet diameter = 2R and the velocity 

profile parameters n, u(R, z) and u(0, z) will all vary with distance 

z. We intend to investigate this representation in order to improve 

our understanding of measurements on sheets produced by 

colliding fluid jets [11], following on from the simulation 

predictions shown in Figure 10. 

 These and other applications for the general simulation code 

[13] are now well underpinned by measurement and theory for 

typical CIJ conditions. 

 
Figure 8: Results for a 5.66 m/s water jet from a  50 µm radius Microdrop ® 

nozzle at 2% flow modulation; the velocity range in equation (7) is shown by    

(-♦-) starting from > 1 at the nozzle exit, and the jet radius divided by nozzle 

radius is shown by (-•-), with a dotted line representing the radial growth trend. 
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Figure 9: Results from the simulation of the same fluid and nozzle as in Figure 

8  with 0% flow modulation, showing an additional dotted line representing the 

trend for the relaxation of the velocity profile downstream. The growth rate for 

the jet radius is lower than in Figure 8, since the simulation represents the free 

jet break off.  

 
Figure 10: Predictions for free jet lengths of 0.011 Pa s glycerol and water 

mixture from a 0.85 mm diameter nozzle, as used in colliding jet experiments 

[11] Free jet lengths used are ringed (O), while the simulation results are (-♦-); 

the dashed line represents a 2-component exponential decay of the velocity 

range, which is a typical behavior for the relaxation downstream (e.g. as in 

Figure 9). 
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