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Abstract 
 The Image Stability Technical Center of Eastman Kodak 

Company is continuing its evaluation of various media in a new 

system for testing image permanence in the presence of elevated 

levels of ozone.  An initial presentation of system uniformity was 

made at the Digital Photo Fulfillment Conference in February, 

2009.  This second follow-on paper will report on experimental 

findings to date relating to ozone gas impingement method and gas 

velocity at 1 ppm concentration as well as initial reciprocity studies 

for dye-based inks on one porous photo paper.  Future studies will 

include repeat experiments with other industry media types, tests 

with lower velocities, and temperature/RH effects. 

Introduction 
 It is well documented that exposure to the common air 

contaminant ozone is one of the more important factors impacting 

the life of printed images [1].  With this recognition, the digital 

print industry has been working toward the goal of adopting a 

standardized test method for establishing image permanence 

claims based on ozone exposure.  Consensus on methodology is 

sometimes hampered by the lack of test data and need for further 

study. 

 Commercially available environmental chambers used in 

ozone testing can be costly and may afford only limited 

experimental flexibility because of fundamental capabilities or as-

manufactured design impediments. 

 In the fall of 2008, Eastman Kodak Company completed 

development of a custom environmental chamber (Fig. 1) for 

dedicated use in understanding and quantifying the impact of 

ozone exposure on printed images [2]. 

 

Figure 1.  New ozone environmental chamber from Kodak . 

 In addition to controlling temperature, humidity, and ozone 

concentration, this new chamber affords the ability to study other 

variables such as impingement method and velocity.  Key 

parameters are monitored and controlled using a programmable 

logic controller.  Refer to Fig. 2 for general design. 

 

Figure 2.  Chamber design schematic. 

 The chamber design employs a variable speed centrifugal 

blower to regulate the gas volume being recirculated.  

Impingement velocity is controlled via fan speed, the number of 

installed plenums, the design of the perforation pattern in the 

impingement plenum, and the target standoff distance.  Figure 3 

pictures one style of impingement plenum. 

Figure 3.  Face of impingement plenum. 

 A UV light source is used to generate ozone, which eliminates 

potential contamination from the by-products associated with 

ozone generation using the corona discharge method.  Ozone 

concentration as supplied to the targets is measured within the 

chamber and is precisely controlled by continuously regulating the 

position of two control valves, either directing ozone-enriched 

instrument air to the chamber or to an external exhaust.  Ozone 

enters the chamber at the inlet of the centrifugal fan to achieve 

good mixing.  The air in the room where the chamber resides is 
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scrubbed using carbon filters to reduce ambient ozone 

concentration to ~2 ppb.  A small amount of continuous exhaust 

ensures that some fresh make-up air is continually introduced into 

the chamber to avoid build-up of any potential contaminants. 

Experiment Background 
 For these experiments, the media chosen was identical to that 

used in the earlier uniformity studies and employed dye-based inks 

on porous photo paper.  The particular system chosen was thought 

to have a high sensitivity to ozone exposure.  A test target was 

designed having 18 patches each of neutral, magenta, and cyan, all 

at respective equal dmax densities, as shown in Fig. 4.  Three 

neutral dmin patches are also included.  (Prior testing has revealed 

that magenta and cyan are typically the first colors to fail when 

exposed to ozone) [1].   

Figure 4.  Test target.-(57 blocks, neutral dmax on left, magenta center, cyan 

on right, neutral dmin on bottom). 

 Fresh samples were printed just prior to the start of the 

experiments from the same lot of paper and ink.  Initial density 

measurements were made just prior to the start of each event, using 

the Gretag Spectroscan spectrophotometer.  Reported results are 

the loss in density over the life span of the test. 

 Test targets were held on three sides in a frame for precise 

and constant positioning throughout the experiment.  A target 

blade having seven mounted targets on one face is shown in Fig. 5.  

This mount allowed for only single-sided target exposure to ozone 

during the experiment.  The number and position of targets varied 

depending on the particular test design. 

 

Figure 5.  Target mounting blade with targets.  

The following equipment was used in support of these 

experiments: 

• InUSA IN-2000 LoCon UV adsorption ozone analyzer 

• General Eastern Hygro M2 hygrometer 

• Gretag Macbeth/Spectroscan spectrophotometer 

• Kodak’s custom designed environmental chamber as 

described above 

 Temperature and humidity conditions were confirmed prior to 

the start of the experiment using a hygrometer with traceable 

calibration.  Ozone concentration was measured with an InUSA 

ozone analyzer with traceable calibration to 1 ppm and confirmed 

with a redundant analyzer.  Conditions were monitored and 

confirmed throughout the experiment duration. 

Experiment A – Impingement Method/Velocity 
 This first experiment examined fade results over a set of 

identical targets at controlled conditions of 22.2 ºC (72 F) dry bulb, 

50% RH, and an elevated ozone concentration of 1 ppm, all under 

closed loop control with differing impingement methods and 

velocities.  Ozone concentration supplied to the targets was held 

constant for a duration of 13 days during each of four test phases.  

In the chamber, all test targets were equally spaced off 

impingement plenums using fixed position target mounts.   

 A total of 18 targets were positioned in the center six rows 

and center three columns of the chamber and were impinged with 

ozone-enriched air from a plenum of orifice jets at 90º to the target 

surface.   

 Another six targets were positioned in the two outermost rows 

using the center three columns but, in this case, the plenums were 

blocked so that these targets had no direct impingement.  Instead, 

return grilles were left open so the targets were only exposed to the 

volumetric turnover of ozone-enriched air, which would be 

flowing mostly parallel to the surface. 

 The four test phases of this experiment were conducted based 

on equal changes in fan speed (900, 1550, 2200, and 2850 rpm) 

supplying the ozone-enriched air.  New targets from the same 

original batch were loaded, exposed and evaluated for each phase, 

using equal exposure hours and chamber conditions.  Fan laws 

dictate that the equal rpm changes represent equal changes in fan 

volumetric output.  Based on the fan curve, rpm, static discharge 

pressure, and open orifice area of the test chamber, it was 

calculated that these fan speeds represented plenum discharge 

velocities of 120, 240, 360, and 480 fpm.   

 The data for impinged targets is published against these four 

velocities of ozone-enriched gas.  For the nonimpinged targets, the 

fan speed settings were converted to approximate volumetric 

turnover per hour, as the fan discharge CFM and chamber volume 

are known.  For the nonimpinged targets the data is plotted against 

these volumetric turnover rate estimates.  The four conditions 

roughly equate to 925, 1850, 2775, and 3700 volume turns/h 

[VT/h]. 

 The goal of this experiment was to assess whether 

impingement velocity or method had any discernable impact on 

fade results.  The data represents the average density loss of all 

patches of the same color record for all targets. 

Experiment A – Results and Discussion 
Figure 6 displays the average fade results of the cyan, 

magenta, and neutral component colors for all color patches on the 

18 impinged targets against the four velocities tested. 

Figure 7 displays the average fade results of the cyan, 

magenta, and neutral component colors for all color patches for the 

NIP26 and Digital Fabrication 2010     Technical Program and Proceedings 391



six nonimpinged targets against the four velocities as converted 

into volumetric turnover.   

  

Figure 6.  Impinged target fade vs gas velocity. 

 

Figure 7.  Nonimpinged target fade vs volume turnover ratio. 

Some caution must be used in interpreting the results as this 

only represents one trial with one media type.  Multiple trials, 

media variability, other media, and test noise may yield different 

results.  With that understanding, these results might suggest the 

following preliminary conclusions: 

• For impinged targets with impinged velocities of 100 

fpm or more, impingement velocity does not appear to 

impact fade, as fade results in each color record are 

essentially constant. 

• For the nonimpinged targets, the data may suggest that 

the rate of volumetric turnover can influence fade results, 

as all fade results show some minor increase in fade with 

increasing volumetric turnover rates.  Note that these 

were fairly high turnover rates tested. 

• In most cases, the fade results for the nonimpinged 

targets were slightly less than similar results for the 

impinged targets, except at very high turnovers.  This 

may suggest that a chamber incorporating impinged 

target design with a minimum impingement velocity of 

100 fpm may be a more “robust” test bed.  Standard 

deviations of the data set tend to support this as well. 

Experiment B – Reciprocity 
 This second experiment examined fade results over a set of 

identical targets at controlled conditions of 22.2 ºC (72 F) dry bulb, 

50% RH, a fixed velocity, and a constant ozone cumulative 

exposure of 504 ppm-h.  This was accomplished by setting a 

desired ozone concentration and determining the required test 

duration.  Ozone concentrations of 1.0, 1.5, 2.1, 3, and 5 ppm were 

tested, with durations per Table 1.  Reciprocity data was collected 

on impinged and nonimpinged targets tested simultaneously within 

the chamber.  For all tests, the fan speed was set at a fixed speed of 

1750 rpm. 

Table 1.  Ozone Concentration vs. Test Duration 

Test phase #1 #2 #3 #4 #5 
ppm 1.0 1.5 2.1 3.0 5.0 

h 504 336 240 168 101 
days 21 14 10 7 4.2 

ppm-h 504 504 504 504 504 

 

 As before, all test targets were equally spaced off 

impingement plenums using fixed position target mounts.   

 A total of 18 targets were positioned in the center six rows 

and center three columns of the chamber and were impinged with 

ozone-enriched air from a plenum of orifice jets at 90 degrees to 

the target surface.   

 Another ten targets were positioned in the two outermost rows 

using the center five columns but, in this case, the plenums were 

blocked so that these targets had no direct impingement.  Instead, 

return grilles were left open so the targets were only exposed to the 

volumetric turnover of ozone-enriched air which would be flowing 

mostly parallel to the surface. 

 The results are summarized graphically in Figs. 8-12 for the 

cyan, magenta and neutral component color records.  In these 

graphs, the impinged targets are to the left (hashed bars) and the 

nonimpinged targets are to the right (solid bars).  Ozone 

concentrations increase from 1.0, 1.5, 2.1, 3.0, and 5.0 ppm from 

left to right in each series.   

 

Figure 8.  Cyan reciprocity results for impinged and nonimpinged targets. 
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Figure 9.  Magenta reciprocity results for impinged and nonimpinged targets. 

 

Figure 10.  Neutral red reciprocity results for impinged and nonimpinged 

targets. 

 

Figure 11.  Neutral green reciprocity results for impinged and nonimpinged 

targets. 

 

Figure 12.  Neutral blue reciprocity results for impinged and nonimpinged 

targets. 

Experiment B – Results and Discussion 
 The goal of this experiment was to test the theory of 

reciprocity, i.e., equal cumulative exposure results in equal fade.  

In addition to testing the basic theory, we also sought to test 

whether the method of impingement made a difference in results.   

 Clearly, this data is more difficult to interpret.  One could 

argue that the impinged results showed a fairly consistent trend in 

all color records.  The nonimpinged results do not exhibit that 

same consistency.  This may be partly explained by the 

observation in experiment A that using impingement at 100 fpm or 

more may be a more robust testing position. 

 We would exercise the same caution stated for experiment A, 

which was that these results only represent one trial with one 

media type.  Multiple trials, media variability, other media, and test 

noise may yield different results.  With that understanding, these 

results might suggest the following preliminary conclusions: 

• that reciprocity does not hold between low and high 

levels of ozone concentration.  It may be that this is a 

real failure of reciprocity or “apparent reciprocity,” at 

least for this specific media.  However, one concern we 

would have with this conclusion is the lack of a standard 

calibration method above 1 ppm concentrations for 

readily available commercial ozone analyzers.  There is a 

tendency to assume that these systems are linear above 

their 1 ppm calibration points, when extrapolating out to 

higher operating conditions.  The failure of the data to 

show reciprocity at all levels might easily be explained 

by the suggestion that we were not actually testing at the 

desired aim concentrations indicated but at something 

less or more.  A more precise measurement method 

would be required to better understand this failure. 

• that the lack of consistency across the impingement 

methods during simultaneous testing in the same 

chamber would suggest that impingement method does 

play a role in results.   

• perhaps equally as concerning is that peak fade results 

occurred at a test level other than 1.0 or 5.0 and that 5.0 

always showed the least fade in this reciprocity 

experiment.  If this is not a calibration issue or related to 

some other test phenomenon and held true across other 
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media types, it would complicate fair comparison of 

media and testing systems across various sites that use 

differing methodologies. 

Conclusions/Future Studies 
 Definitely, the results generated by these experiments warrant 

further testing and exploration.  The ability to draw sound 

conclusions based on a sample size of one has inherent risks.  

However, the insights gained are worth sharing if they prompt 

further discussion and lead to additional testing. 

Future Studies 
 The results reported here suggest the following additional 

testing be executed: 

• Repeat testing with this same media along with other 

media types. 

• Exploring more sophisticated means of confirming ozone 

concentrations at levels above 1 ppm. 

• Reconfiguring the environmental chamber to test at 

impingement velocities less than 100 fpm.  All testing 

done here was conveniently executed over the range of 

available fan speeds with a fixed chamber configuration.  

Altering the chamber configuration (number, type, and 

open area of plenums) will permit lower velocities to be 

explored.  

• Dry-bulb temperature and RH affects. 
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