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Abstract 
The effects of nozzle defects on the behaviour of drops ejected 

from drop-on-demand print-heads were studied. Nozzles in two 

types of commercial print-heads were modified with two different 

micromachining techniques: focused ion beam (FIB) milling and 

pulsed laser micromachining. Nozzles were modified by producing 

single or multiple notches on their edges. The studies focused on 

the volume, speed and direction of travel of the drops. Fifteen 

different types of geometrical defects on 128 nozzles were studied. 

Shadowgraph images captured with short high time resolution 

were used to determine the drop size, speed and trajectory from 

the same nozzles before and after modification. The results 

indicate that geometrical defects up to ~100 µm2 at the front (exit) 

face of a 50 µm diameter nozzle do not cause any significant 

variation on the behaviour of these nozzles but that defects at the 

back (entry) of the nozzle can have a major effect on the direction 

of jetting.  

Introduction  
A series of experiments was carried out to quantify the effects 

of nozzle defects on the behavior of droplets jetted from a 

commercial piezoelectric drop-on-demand printhead. These 

experiments are of interest as most applications require the 

directionality of droplets, and their speeds, to be as uniform and 

predictable as possible. The behavior of droplets is determined by 

several variables such as the liquid properties, the drive pressure 

history and the dimensions and shape of the nozzles [1]. As 

theoretical models and numerical simulations are often limited to 

symmetrical geometries and to relatively simple liquid properties 

(e.g. Newtonian) users are obliged to make trial-and-error tests to 

determine the best conditions for printhead operation [2-4]. It has 

been observed that individual nozzles within a printhead can 

behave in different ways as a result of factors such as nozzle 

imperfections, the presence of dried ink around the nozzles, 

inhomogeneities in the piezoelectric elements and on the nozzle 

plate material, and the presence of air bubbles in the printhead 

channels [5]. In this study our efforts were concentrated on nozzle 

imperfections and their effects on jet and droplet directionality.  

 

The influence of nozzle properties on jet directionality has 

received little attention because the modification of very small  

nozzles (typically tens of micrometers in size) is difficult: it 

requires precise micromachining by techniques which do not affect 

the normal operation of the printhead. In our experiments, several 

methods were considered to create artificial imperfections in 

nozzles but only a few techniques were identified with the 

necessary tolerances ( a few micrometers) which were also 

compatible with common nozzle plate materials. This paper 

describes a series of experiments that were carried out to 

characterize the directionality of jets through the shadowgraph 

imagining of droplets produced by micro-modified nozzles [6].  

The work is described in four sections: i) experiments using a 

focused ion beam (FIB) to make notches in the nozzle exit, ii) 

experiments where single notches were created by laser pulses, iii) 

experiments where the inside surfaces of nozzles were modified 

and iv) experiments involving more complex patterns of notches. 

Notches produced by focused ion beam (FIB) 
milling 

The technique of focused ion beam (FIB) milling is used in 

materials science to remove materials on scales from a few nm to 

µm. It is often used in conjunction of a scanning electron 

microscope (SEM) to direct the FIB probe and observe its effects. 

For this work, FIB milling was used to produce square notches on 

the edges of a set of nozzles. The aim of these experiments was to 

produce well-characterized defects in the form of notches on 

printhead nozzles and to characterize the directionally of droplets 

produced by such nozzles.  The milling was carried out with a Carl 

Zeiss 1540 XB CrossBeam FIB/SEM system. Briefly, the FIB was 

used to remove material from the surroundings of a metallic nozzle 

in a very accurate way by the action of focused high-energy ions. 

With an ion current of 50 pA a machining tolerance of ~50 nm was 

achieved.  This technique has the advantage of being very precise 

but the disadvantages of being applicable only to metallic materials 

and slow (drilling a 3 × 3 µm notch through the nozzle plate took 

~1.5 h).  In addition, the method is not very flexible as samples are 

subject to high vacuum and the size of the instrument chamber 

limits the size of printhead which can be modified.   

 

 
Figure 1 SEM image of a notch on a Spectra nozzle (in a nickel nozzle plate) 

produced by focused ion beam (FIB) milling.  
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Nozzle modification experiments were carried out on a 

Spectra Dimatix SE-128 AA printhead which has a gold-coated 

nickel nozzle plate, with 128 nozzles, 35 µm in diameter, at a pitch 

of 508 µm,. This printhead typically produces drops with a volume 

of ~30 pL at 5 m/s. An example of a modified nozzle is shown in 

Fig. 1.  Three notch sizes were milled in these nozzles: 1 × 1 µm, 2 

× 2 µm and 3 × 3µm. In each case the notch penetrated through the 

whole nozzle plate.   Jetting experiments were performed with a 

generic UV curable black ink. 

 

 
Figure 2 Double flash shadowgraph image showing a set of six droplets jetted 

from the Spectra SE-128 printhead. Six droplets are observed on the top and 

the same six droplets are observed at the bottom 700 µs later.   

The direction of motion of the drops ejected from individual 

nozzles was determined from analysis of double-flash images by 

calculating the vectors joining the drop positions at the two 

different times, as shown in Fig. 2. The method used to identify the 

position of the center of mass of the droplets from such images is 

described in [7]. Droplet images were captured with a 

shadowgraph system consisting of a microscope lens array (Navitar 

12x Ultra zoom), a Nikon D80 DSLR camera and a double-flash 

spark light source (Nanolite). The direction of the jetted droplets 

was determined for all the 128 nozzles of the printhead in batches 

of images covering 10 jets each. Each image overlapped its 

neighboring images to the extent of five jets in order to assess and 

quantify the pincushion distortion caused by the optical system.  

With the same optical system, images of a precision square grid 

(microscope graticule) were also captured to determine a 

correction factor for this distortion, as shown in Fig. 3. A third 

order polynomial function was computed and applied to the 

droplet position data to compensate for this small but significant 

distortion. All the nozzles in the printhead were characterized in 

terms of the jet direction before and after the FIB modifications to 

identify any differences.  The direction of drop travel from each 

nozzle was taken as the mean value derived from five separate 

images. 

 

 

 
Figure 3 Image of a square grid showing pincushion distortion; the effect is 

most noticeable at the image borders and negligible at the center. The size of 

each square is 100 µm. 

Figure 4 shows results which indicate that notches of sizes 3 

× 3 µm and even smaller did produce some change in the jet 

direction but that these effects are difficult to quantify and 

reproduce because they are superimposed on the intrinsic 

variability in directionality of the jets which is observed when the 

printhead is emptied, studied by SEM, and then remounted and 

refilled with ink. Those processes alone produced directionality 

changes as large as 0.7° and may be associated with ink deposits 

around the nozzle inlets. However, two important conclusion can 

be drawn from this work: (i) the double-flash imaging results 

confirmed the intrinsic jet straightness variability claimed by the 

head manufacturer (< 1°) and (ii) very small notches can produce 

affect the directionality of jets but the deviation is of the same 

order of magnitude as the natural variability observed between the 

nozzles in an array. 

 

 
Figure 4 Angles of droplet travel (relative to the nozzle plane normal) before 

and after modification by FIB milling. The effect of the changes is noticeable 

but of similar magnitude to the effect produced by cleaning and refilling of the 

printhead. 
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Side notches produced by laser machining  
The aim of these experiments was to extend the studies 

carried out with the FIB to a scale where the effects of side-notches 

on nozzles were easily observable and quantified. The technique of 

pulsed laser micromachining can be applied to non-metallic 

materials such as silicon and polymers. The method is not so 

precise as FIB but much more flexible as it does not require the 

printhead to be machined in a vacuum or even to be dried, and is 

not restricted to metallic materials.  In our experiments, we 

modified certain nozzles in the polyimide nozzle plate of a Xaar 

XJ126 printhead. This printhead has 126 active nozzles, with a 

diameter of 50 µm and a pitch of 137 µm. Machining was 

performed with a Nd:YAG pulsed laser (New Wave Quicklaze 

50ST2) mounted on a three-dimensional stage support.  In contrast 

to the FIB, the machining of a square notch 25 × 25 µm was 

carried out in >500 ms. However, the optical and mechanical 

elements used in this technique limit the machining quality to 

tolerances of the order of 3-5 µm. Both inspection and machining 

involved optical microscopy. The laser pulses were used to create 

defects on the sides of nozzles, in order to study the effect of the 

notch size on the jet direction and speed. Notches were cut 

completely through the nozzle plate (approximately 50 µm thick) 

with the following dimensions: 4 (width) × 4 (length) µm, 12 × 7 

µm, 16.5 × 15 µm, 19 × 17 µm,  and 25 × 19 µm.  All the defects 

were produced by trains of UV laser pulses (355 nm wavelength) 

with 4 ns duration and 2 mJ pulse energy. The number of pulses 

was varied according to the size of the notch. Thirty nozzles were 

modified for these experiments: they were machined in sets of 

three with the same size of defect. Figure 5 shows an example of a 

modified nozzle.  Jet direction was measured for each nozzle 

before and after the defects were created. Double-flash images of 

the drops were analyzed to identify the drop center positions, angle 

of travel and speed. As in the FIB experiments, optical distortion 

was corrected during the analysis. The results are shown in Figure  

6 (marked ‘side notches’), and Figure 7 shows the variation of jet 

direction with notch length. 

 

 
Figure 5 Optical image of a machined notch (25 × 19 µm) on the side of a 

nozzle in a polyimide nozzle plate, produced by pulsed laser micromachining.  

The results obtained with this technique were consistent with 

those from the FIB experiments. Notches smaller than 7 × 9 µm 

did not produce significant changes in the jetting behavior. The 

inherent variability of jet direction in this print-head was ~1°. A 

notch length of ~9 µm is required for the defect to reach the back 

surface of the nozzle plate in this geometry. This therefore suggests 

that the jetting direction becomes significantly affected only when 

the defect affects the back face of the nozzle plate, at the entry to 

the nozzle. These experiments ruled out the assumption that 

superficial scratches on the surface of the nozzle plate may affect 

the behavior or directionality of jetted droplets, as only relatively 

large defects penetrating right through the nozzle plate were found 

to affect the directionality of the printed droplets.   

 

 

 
Figure 6 Results of experiments with the nozzles of a commercial print-head 

modified by laser-machining, as described in the text. 

 
Figure 7 Jet direction (expressed as angle of travel) plotted against notch 

length for single side-notches. Changes in the jet angle were significant only for 

notches longer than ~4 µm.  

 
Figure 8 Schematic diagram of a notch parallel to the nozzle surface.   
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Notches machined parallel to the nozzle inlet 
by pulsed UV laser  

The objective of these experiments was to determine the 

effect on the directionally of droplets of defects lying parallel to 

the conical surface  of the nozzle, as shown in Figure 8. In these 

experiments, 7 × 7 µm square notches were created in five nozzles 

of a Xaar XJ126 printhead with trains of UV laser pulses using the 

technology described above.  During the machining of the notches 

the printhead was inclined in such a way that the laser beam 

entered parallel to the nozzle inlet. Unfortunately, given the 

geometry and materials used in the construction of this printhead, 

the defects could not be directly observed.  These modified nozzles 

were used to eject droplets and their directionality determined by 

the methods described above. Figure 6 shows the results (marked 

as ‘notches parallel to the nozzle entry’) which demonstrate a 

clearly significant effect on the directionality of the droplets and 

confirm that damage at the rear of the nozzle has more effect than 

the same amount of damage at the front.   

Symmetrical notches machined by pulsed UV 
laser  

The aim of these experiments was to study the behavior of 

droplets formed by different modified nozzle geometries. The 

directionality, speed and volume of the main droplets produced 

from these nozzles were studied and compared with the values for 

unmodified nozzles in the same print-head. Five different patterns 

of notches were created on a Xaar 126 printhead by laser 

machining. These geometries were: two opposed notches each 7 × 

7 µm in size across the axis of the nozzle; two opposed notches 

each 7 × 11 µm in size across the axis of the nozzle; four notches 

each 7 × 7 µm in size placed on the vertical and horizontal axes 

(bottom left image in Figure 8); four notches each 7 × 7 µm in size 

placed at diagonal positions on the nozzle (bottom right image in 

Figure 8); four L-shape notches each located on the vertical and 

horizontal axes (top right image of Figure 8).  Identical defects 

were machined in neighboring groups of three nozzles. 

 

 
Figure 8 Examples of symmetrical patterns machined on the nozzles of a Xaar 

XJ 126 print-head by UV laser micromachining (optical images).  

The droplets jetted from modified nozzles were observed 

using the shadowgraph system and analyzed as described above. 

The results are shown in Figure 6 (marked ‘symmetrically 

modified’). The directionality of the main drops remained 

unchanged for all the symmetrically-modified nozzles.  Droplet 

sizes and speeds also remained constant within the precision of 

measurement. 

Conclusions  
We have performed a series of experiments to explore the 

influence of nozzle defects on the directionality and other 

properties of droplets printed from commercial piezoelectric DoD 

print-heads. Laser micromachining and focused ion beam (FIB) 

milling were used to produce square notches on the sides of 

nozzles in various patterns,  ranging from a single notch on one 

side to several notches distributed around the nozzle exit. Our 

results show that only defects that affect the shape of the back of 

the nozzle (i.e the entry region) affect the jet directionality in a 

significant way. For a print-head with a 50 µm nozzle diameter in a 

50 µm thick nozzle plate, defects smaller than 19 × 17 µm did not 

alter the volume or the speed of the main droplets. These studies 

suggest that scratches on the front surface of a nozzle plate should 

not affect the directionality of printed droplets as they are 

superficial and usually smaller than the defects introduced in this 

work.  

This work was supported by the UK Engineering and Physical 

Sciences Research Council in the ‘Next-generation inkjet 

technology’ project. 
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