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Abstract 
As Print Service Providers (PSPs) become more digital and 

move toward digital presses and digital workflows, a technique 
from Electronic Design Automation called multi-level simulation 
can simultaneous analyze and recreate interplay of operations, 
document design, and lean manufacturing with the next generation 
of PSPs.  Multi-level simulation recognizes that hierarchical 
design has different levels of abstraction and each layer of 
abstraction has its own design language to search its respective 
design space.  However, multi-level simulation integrates these 
multiple heterogeneous and overlapping layers of design 
abstraction for an optimal system goal.  This goal for silicon chip 
is power, clock speed, or die size; the goal for a digital PSP is, 
ultimately, operational efficiency in the face of variability of job 
fulfillment.  Multi-level simulation of a PSP bind together the 
competing goals of manufacturing efficiency, operational 
overhead, and content fulfillment capabilities; we submit there are 
three abstraction layers for these PSP goals: job for routing both 
inter-PSP and intra-PSP, PDL transformations for workflow, and 
image for visual inspection.  Using Ptolemy EDA tools as a 
backbone, we will demonstrate this approach on such complex, 
high-value digital workflows such as security documents and 
automated print quality analysis, in terms of higher operational 
efficiency and profit per pages. 

Introduction 
This paper talks about the concept of using a well-known 

technique called multi-level simulation to give insight into the end-
to-end costs of running a PSP in an efficient manner. Multi-level 
simulation manages the analysis of a system like a PSP in the face 
of both complex system internal interactions and heterogeneity of 
processing components.   We will apply this technique in order to 
handle specific type of PSP where IT infrastructure is closely 
integrated with physical manufacturing infrastructure.  

We use multi-level simulation environment to capture both 
the physical and digital processing of a PSP in a single functional 
representation, and model its end-to-end system behavior.  This 
type of simulation recognizes the physical and digital domains and 
their boundaries, and allows design space exploration and 
optimization between both domains. The choice of domain for the 
domain will also affect its efficiency.  For instance, this simulation 
can determine whether it is better to print content in one location 
and transport to multiple locations, or print in multiple locations 
and transport to multiple remote sites. The simulation can 
determine where it is most advantageous for this digital-physical 
transformation to take place.  While transport and storage may be 
easier in the digital domain, security and binding may be better in 
the physical space.  Furthermore, when the printed content stream 
may control the physical manufacturing equipment (e.g. when a 

barcode on a book block configures a cutting machine), we must 
have a tool that models such complex interaction. 

HP provides workflow software solutions to address digital 
print productivity issues: Smart Planner and SmartStream 
Production.  SmartPlanner is a job estimation and business 
planning software. It provides job costs for both digital and 
conventional presses, in terms of time, costs and margins, covering 
printing, finishing and supply chain parameters, to establish a 
breakeven point between different production processes. It helps 
PSPs to understand the financial impact of getting into a new print 
market, and the necessary equipments.  This year, HP débuted the 
SmartStream Production Analyzer, a real-time press monitoring 
software, to help PSP’s reach more effective, more efficient 
production from Indigo presses. This Production Analyzer 
monitors, tracks and benchmarks the performance of Indigo 
presses, and aggregate press efficiencies and inefficiencies in terms 
of press types, shift, and press groups. It provides historical reports 
of production characteristics (e.g. production performance, up 
time, printing errors), and informs optimal production planning by 
providing patterns of exceptions (that is, inconsistencies and 
unexpected production behavior learned from previous 
productions). 

These solutions are a great first step. In particular, 
SmartPlanner provides quantitative analysis in units of dollars, 
which is the ultimate judgment of business success; and Production 
Analyzer is capable of tracking and tracing dynamic changes of 
press production. However, today neither provides the complete 
aid to decision making in end-to-end print manufacturing 
operations. The technique of multi-level simulation seeks to fortify 
that analysis with finer resolution and a greater understanding of 
the internal dynamics of the PSP. 

Application Context 
Before we explain the role of multi-level simulation, we must 

further define our terminology and the fields of research that we 
will be leveraging in our application.   This novel application of 
multi-level simulation will also connect the challenge of 
operational efficiency of PSPs to an emerging research field called 
cyber-physical systems. 

We define the term a digital PSP from a broad range of PSP;  
a digital PSP close integrates IT infrastructure, digital presses and 
physical processing devices such as binders and cutter. PSPs are 
given a set of orders and must process these orders within certain 
time and cost constraints.  In particular, a digital PSP clearly has an 
IT infrastructure in place to primarily source job orders from the 
Internet, but also has significant capital investment in physical 
infrastructure (presses, finishers, binders, etc.).   A digital PSP has 
the twin competitive pressure of being flexible to varied short run 
job type, and having their equipment run at maximum efficiency. 

We identify the tools that we will be using will be coming 
from the Electronic Design Automation (EDA) industry.  The EDA 
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design tools were used to compute electrical waveforms and design 
single chip layouts, but, as the number of transistors in a device has 
grown by Moore’s law, has evolved to include higher levels of 
integration from PCB boards, network computer systems and even 
remote sensing networks.  Thus, the EDA software is not a single 
software tool, but rather set of tools structured in multiple layers of 
interactions and at different levels of complexity from low-level 
single level circuits to high-level digital systems.  As digital 
systems have become more complex, the EDA tools coordinate the 
multiple teams of designers, working in parallel, while ensuring 
overall end-to-end digital functionality still meet specifications.  
For example, the design of a next generation cellphone would not 
be possible without the use of EDA tools and overall tool 
architecture that took into account multiple-levels of complexity. 

The application of EDA tools to the domain of digital PSPs is 
logical, but not straightforward: while the underlying technologies 
may be the same, the challenges is not to manage the size of the 
problem, but rather the heterogeneity of the system -- that a digital 
PSP simultaneously produces content in a combined IT and 
manufacturing infrastructure.  The challenges in managing a digital 
PSP come from analyzing and tracking the content even when the 
content is transformed from digital bits into physical 
manifestations. The corresponding design information must move 
with the content even with these changes in medium.  While we 
can virtually assure data integrity in the digital domain, the 
physical domain becomes a bit of a robust sensing problem.  Job in 
the digital domain, transport is electrical; in the physical domain, it 
requires a conveyor belt or trained human beings. What 
distinguishes the PSP from EDA problem is its heterogeneity, and 
the complexity of the medium (vs. electricity) especially within a 
physical medium.  While not a perfect match, the problem that 
EDA tools tackle the optimal efficient physical design of digital 
systems is as close as we are going to get to the design of PSPs.    

Multi-level simulation is a tool that clearly has its use both in 
the digital PSP and the digital system design space.  We define 
multi-level simulation as the integration of multiple level of 
representation into a single integrated environment, where objects 
within the simulation often have multiple representations that 
support same functionality on different levels of modeling.  For 
example, in the digital design domain, the EDA tools support at 
least 4 major levels of modeling that have varying degrees of 
precision and representation of the device in question:  electrical, 
switch-level, register transfer level (RTL), behavioral, and system 
level.   These levels of representation allow for an efficient 
exploration of the design space.  In later sections of the paper, we 
will define our own levels of simulation and show how they can be 
used to solve many analysis problems within a digital PSP. 

The use of the EDA tools for digital PSPs is becoming an 
emerging field of research called cyber-physical systems.  The 
specific application in growing profitable industry like digital print 
is of great interest to many EDA researchers. 

Our EDA Tool of Choice: Ptolemy 
We chose an open-source EDA toolkit, Ptolemy, as our 

simulation tool for print production systems. Ptolemy is a Java-
based, actor-oriented modeling framework for concurrent, real-
time, embedded systems. Compared to object-oriented design 
practice, actor-oriented design emphasizes on the concurrency and 
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Figure 1. Simulation infrastructure for digital print service 
providers. (a) The simulator architecture built on the EDA 
code Ptolemy II. (b) An example instance of multi-level 
resolution within a simulation. An incoming order is 
composed of multiple book titles; each digital file is 
composed of cover and book block, which in turn is 
composed of PDF components. Depending on desired 
granularity, the simulator can act at book level, or part level 
(that is, cover and book block), or pdf component level.      
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communication among components. Ptolemy implements a set of 
well-defined models of computation (for instance, continuous time, 
discrete event, finite state machine) that govern the component 
interactions. It provides a hierarchical component assembly design 
environment that enables the use of heterogeneous mixtures of 
models of computation (e.g., hybrid and mixed-signal models). 
The print production system and control involves compute, logical 
and physical components, for which, Ptolemy’s ability of blending 
in different models of computation provides the necessary 
simulation infrastructure support.  

The dominant model of computation that we use to simulate 
the digital print manufacturing environment is the discrete event 
model of computation (“Director” in Ptolemy language). In this 
model of computation, the payload (or content of work) is modeled 
as tokens. Depending on different granularity during the 
simulation, a token can be an order, or a book, or a part, or a PDF 
component. The “actors” in print factory are partitioned into three 
types: sources that produce tokens, for instance, the store fronts 
that acquire orders, transformers that process tokens, for instance, 
buffers, machines, workers, and sinks that consume tokens, for 
instance, the final shipping process.   

The practice of multi-level simulation necessarily integrates 
both the components themselves and models of other components 
that are otherwise too difficult or too expensive to be included. For 
instance, when the desired granularity resides at the PDF 
component level, it is necessary and most cost effective to 
integrate a real raster imaging process engine as a component of 
the simulation model. Ptolemy provides excellent infrastructure to 
support this hardware-in-the-loop and/or software-in-the-loop 
paradigm; Ptolemy provides an option to synchronize the 
simulation time (model time) and the real time (wall clock time) 
that ensures the seamless integration of models and devices within 
the same system simulation platform. 

Ptolemy provides a simulation infrastructure of the end-to-end 
print manufacturing operations where data (both operational and 
financial) can be collected at any stage of the print operations. 
These dataset can be applied to aid the decision making at both 
operational and strategic level. It can quantify measurements in the 
unit of dollar and time that can be directly translate into predicted 
business performance – adopting the characteristics of HP Smart 
Planner; it is a dynamic simulation in nature, best cope with highly 
variable and volatile production environment – adopting the 
characteristics of HP SmartStream Production Analyzer. However, 
Ptolemy based simulation by itself does not automatically translate 
into business insights or implementable operations proposals. To 
enable effective management of the simulation results, MySQL has 
been integrated within the simulation environment that directly 
interfaces with other tools for visualization and data mining.  The 
simulation platform shown in Fig. 1 built on Ptolemy backbone 
completes the cycle of knowledge discovery.  

Configuration of Ptolemy  
Now let us define the input, internal models parameters, 

output, and level of modeling of this multi-level simulation to 
target the Ptolemy tool toward digital PSP domain.  

Input to the multi-level simulation is a set of jobs and their 
intents to be fulfilled from the PSP customers, described in JDF-
like format.   Each job contains the requirements for media and 

materials, the processing operations needed to complete the job, 
the dependencies between processing steps, payment prices and the 
due dates also come in here.   

The internal parameters of multi-level simulation are the 
current state of the PSP that is controllable by the PSP, e.g. 
inventory of processing elements, consumables and materials, 
physical locations of processing elements, separation of inventory 
over multiple locations, number of employees, shift designations, 
job scheduling, etc.  The number of these parameters is determined 
by how complex the simulation modeling is. 

End-to-end analysis functions are 1) total profit, 2) end-to-end 
total cost per page, 2) lean manufacturing metrics, work in 
progress, etc. and 4) evaluation parameters by a third party: profit 
and loss, or any other measurable outputs such as customer 
satisfaction.   Given for a given input, the multi-level simulation 
should match closely the measured historical output metrics. 

As shown in Table 1, our three primary levels of simulation 
are defined from the highest to the lowest: job level, Print 
Description Language (PDL) level, and image level.    

Table 1. Levels of Simulation for Digital PSP 
Level Token Actor 
Job Task Graph Scheduling and 

Capacity 
Planning 

Structure  Task Graph + 
PDL of Content 

Content 
Manipulation, 
Control via 
Content 

Image Task Graph + 
Flattened Image  

Integration of 
Visual Inspection 

 
Job Level: Job tokens are defined as task graphs that monitor the 
progress of their processing and the amount of materials that are 
being transported.  Job tokens can also be completely divorced 
from any idea of its inherent content.  Only content that affects the 
processing control need to be abstracted in this type of Token.  Job 
actors must update their processing progress and material levels, if 
necessary.  Job level simulation reflects the high-level capacity 
planning and bottlenecks, effects of job policy, and job scheduling 
and routing.  
Structure level:  The PDL token is a superset of job token with an 
additional representation of its content as an object in a PDL.  PDL 
token must update their processing progress and material levels, if 
necessary, and do the necessary transformations on the PDL to 
reflect the physical processing of the content, e.g. page imposition.  
PDL token can use the PDL representation for control processing, 
e.g. looking for and reading in symbolic barcodes.  In addition to 
job level simulation, PDL level simulation reflects PDL 
manipulations and correctness of content workflow testing (such as 
variable data printing, mail merge).  If physical devices can model 
their physical actions in PDL equivalent transformation, PDL-level 
simulation can test and design new software workflows for virtual 
representations of processing elements, e.g. finishing or cutting 
equipment.   
Image Level:  The Image token is a superset of a job token with an 
additional representation of its content as a set of images. Each 
image in the set should represent a physically distinct object.  
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Image actors must update an image token with their processing 
progress and material levels, if necessary, and do the necessary 
transformations on the Image to reflect the physical processing of 
the content, e.g. page imposition.  Image actors can simulate 
sensing data from image/video capture, and use this sensing data 
for control processing, e.g. visual inspection. 

Table 2. Transformation between digital PSP Tokens 
 
In PSP multi-level simulation, actors have multiple levels of 

representation, but actors must co-exist and interact.   Table 2 
shows the allowable transformation matrix of tokens.  Unlike 
digital design, where all levels of representations can be 
transformed, the PSP design space only allows specific the 
transformation of its tokens.  Structure and Image Tokens can be 
transformed back into abstract jobs tokens as long as they pass 
some QA test.  Structure tokens use a RIP to transform itself into 
image tokens, but an image token cannot be transformed into PDL 
token without ambiguity.  A job token may be transformed into a 
PDL token or image token, by linking the job.  This places some 
limits on our applications of multi-level simulation, i.e. a PDL 
actor cannot be placed down stream of an Image actor, but the 
conversion from PDL to image token reflects the irreversible 
nature of digital to physical transformation.     

Demonstration 
We will describe four use cases that this multi-level 

simulation will demonstrate at the conference, showcasing the 
deep analysis of multi-level simulation. 
1. Dynamic Scheduling w/ Content-based policy scheduling: for 

instance, where scheduling is determined by PDL content 
such as RIP processing time or ink usage 

2. Print Quality Feedback Control: for instance, where 
downstream visual inspection of printed material can trigger 
exception, rerouting or reprint of job   

3. Stability Analysis of Workflow: for instance, where minor 
degradation or loss of processing devices or software errors 
can result in significant capacity problems or failures in 
quality control 

4. Integrated Content and Control: for instance, barcodes placed 
within PDL workflows control downstream finishers 

 

Conclusion 
The advantages of digital print are compelling, but hard to 

design into workflows due to their complex use of IT infrastructure 
integrated with physical manufacturing infrastructure.   We submit 
that EDA tools are critical for both the industrial applications and  
advanced research to meet this challenge.   

The EDA toolset is a mature codebase whose primary goals 
are aligned with the goal of a PSP, the design of physical systems 
to optimally implement complex functional goals under end-to-end 
global physical constraints (cost, area, and power). Its 
computational engines to calculate constrained optimization can be 
reused to optimize digital PSP. 

However, all the EDA toolset is incomplete for all the issues 
of the digital PSP. Effects that EDA tools must adapt to include the 
adaptive monitoring and partnership with PSP vendors, the human 
dimensions, process changes, reliability, the possibilities of 
incorporating new types of media, and the possibilities of 
producing new types of products. These all point towards one 
direction: the simulation infrastructure development including both 
model creation and computation expansion will be a continuous 
improvement (just like lean manufacturing itself) to ensure the 
models reflect the change and the computation is stable and robust 
to the change. 

The future path for the EDA tools in digital PSPs is clear: 
simulation leads to model validation, model validation leads to 
analysis of incremental design changes, the comparative analysis 
of exploratory incremental design changes leads to optimization, 
the automatic iterative search for optimal design paths leads to 
synthesis.  Multi-level simulation is the first link upon the 
complete tool chain for PSP design. 
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