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Abstract 
Simulations of the jetting of Newtonian fluids from drop-on-

demand print heads show that the radial jet pinch-off region, 

which may lie inside the nozzle, is strongly affected by the fluid 

viscosity over the range of values that are commonly used. Jet 

profiles beyond the nozzle exit predicted in these simulations 

match previously published high resolution images very well and 

validate the code used. The simulations show that the radial 

velocity at the minimum radius in the pinch-off region falls 

exponentially soon after neck formation but then approaches a 

speed near that predicted theoretically for filament rupture. 

The overall jet length is primarily controlled by the slow 

speed of radial pinch-off. Towards the final break-off time, 

competition between the original radial minimum and a 

developing second radial minimum can alter the flow conditions 

towards symmetry. The simulations also explain why visible jets 

are shaped like truncated cones. Pinch-off occurs typically within 

one nozzle radius of the nozzle exit, and while it may be located 

within the nozzle region, another radial minimum also forms 

outside the nozzle, close to the exit for low viscosity fluids but well 

beyond it for higher viscosity fluid. The radial collapse follows a 

power law with time, with the power-law index n varying between 

the value of n=2/3 expected for an inviscid fluid and n=1 law 

expected for a viscous fluid. The transition in behavior occurs at a 

viscosity of ~20 mPa s, which is within the range of ~10–40 mPa s 

typical of most DoD inks formulations.  

 

Introduction 
 This paper discusses the processes involved in the thinning 

of the ligaments of Newtonian liquids formed in drop-on-demand 

(DoD) ink-jet printing, just before and including the final pinch-

off. In particular the roles of the viscosity η and surface tension σ 

are examined. Through the pressure associated with the free 

surface curvature, the surface tension provides the key driver for 

the rupture of the liquid ligament. Viscous forces, on the other 

hand, dissipate energy and so mitigate the action of the surface 

tension. The ratio (σ/η) has the dimensions of a speed, with a 

magnitude of ~ 0.5–5.0 m/s for typical DoD inks, being lower for 

higher viscosity fluids. The ratio (σ/η) should therefore be very 

relevant to fluid motion, and in particular to the dynamics of the 

rupture of thin fluid filaments such as those ejected from the 

printhead in DoD printing, since these deliver liquid drops at 

speeds which are similar to the ratio (σ/η). Break-off times are 

related to the ratio (η/σ). 

A numerical model for the simulation of free-surface fluid 

motion associated with flow from continuous inkjet (CIJ) and DoD 

nozzles have been developed by Harlen and Morrison [1,2] as part 

of a recently-completed project [3]. The model assumes 

axisymmetric jetting of either Newtonian or viscoelastic fluids 

from short nozzles with a simplified geometry based on real 

commercial inkjet print heads, and its predictions generally match 

the experimental observations well. The model has also been 

applied to other nozzle shapes including long cones and cylinders 

in studies of fluid properties such as dynamic surface tension, as 

reported elsewhere in this conference [4].  

Predictions from this model for viscous Newtonian fluids in 

DoD mode are shown in Figure 1 and shed light on an important 

aspect of the experimental observations shown in Figure 2 [5]. At 

the time of detachment from the nozzle, the ink jet typically has a 

conical rather than a cylindrical shape, and is so wide at the nozzle 

exit that naïve extrapolation of the jet shape back into the nozzle 

suggests that the detachment point (i.e. the apex of the cone) 

should lie a long distance behind the nozzle inlet. This seems 

physically unrealistic, and thus poses problems of interpretation.  

The model predictions shown in Figure 1 indicate the 

presence of an ‘inner’ pinch-off region, which forms 

(asymmetrically) between the fluid meniscus inside the nozzle (to 

the left hand side of the diagram) and the ‘outer’ region (outside 

the nozzle, to the right hand side).  As the inner portion of the 

ligament shrinks radially, there is almost no disturbance of the 

meniscus or the outer portion of the jet. It is possible that this 

collapse within the nozzle may result in a cascade of threads of 

diminishing diameter [6]. The small size, less than the nozzle 

radius, of this ‘inner’ pinch-off region allows the jet to break off 

within the nozzle depth while retaining an ‘outer’ waist radius of ~ 

3 µm as found experimentally and shown in Figure 2 [5]. 

 

 
Figure 1: Simulation results at different short times before final break-off, for 

the fluid ligament within and close to the nozzle, for fluid with a viscosity of  

0.01 Pa s and surface tension 0.025 N/m² producing ~6 m/s drops. Profiles, 

scaled by the nozzle radius (Rnozzle = 25 µm), are shown magnified in the  

radial direction by factor of  ~10. The nozzle exit is shown by the dotted vertical 

line while the nozzle inlet would lie at an axial position of -2.0. The predicted 

conical shape of the ligament extending to the right is not visible. 
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Figure 2: Radial profile along a jet of fluid with viscosity 0.01 Pa s (with 6 m/s 

final drop velocity) just after it has detached from the nozzle [5]. The upper 

trace is magnified to show the detail and the conical shape of the ligament. The 

zero of axial position corresponds to the location of the nozzle exit (radius 25 

µm). Extrapolation along the broken line suggests that break-off occurs ~500 

µm (~20 x nozzle radius) behind the nozzle. The ligament has a radius ~3 µm 

(~0.12 x nozzle radius) near the break-off point. 

There is also value in comparing the numerical results for the 

collapse of DoD jets with theoretical predictions [e.g. 7-10] and 

observations [11] for the radial pinch-off of ligaments in filament 

stretching tests, since this behavior is often compared with the 

collapse of a DoD inkjet, although it occurs at a slower rate. 

Examples of this method are presented by Vadillo et al. [11], and 

are proving increasingly useful for viscoelastic fluid 

characterization. A thread of fluid is stretched rapidly between two 

pistons ~1 mm in diameter, and then shrinks radially 

(symmetrically) exhibiting minimum width at its mid-point. 

However, subsequent fluid motion may not be symmetric and final 

pinch-off may occur at one or both ends.  

During the final stages of ligament thinning, where radial 

distance scales are no longer related to the boundary conditions 

e.g. the radius of the piston, nozzle or jet head, Eggers has argued 

[7] that viscous fluid motion must exhibit a universal, self-similar 

behavior. His results imply that the ligament radius r at the ‘inner’ 

pinch-off varies as a power law τ n, with τ = tb - t, the remaining 

time before break-off, and n = 1. The pinching speed V is given by: 

V = - dr/dt = 0.0304 (σ/η)  (1) 

 

The predicted shape of the ligament profile, near the pinch-off, is 

asymmetric, rather like that seen in CIJ or in break-off from a 

massive fluid body. Equation (1) is derived from the length scale 

determined from the viscous length lν = (η²/σρ) and the time scale 

determined from the viscous time tν = (η³/σ²ρ) where ρ is the fluid 

density [7]. For typical DoD inks the length and time scales are ~ 4 

to 40 µm and ~ 2 to 40 µs respectively, while the radial collapse 

speed from equation (1) is  ~ 0.025-0.075 m/s, much less than the 

axial speed of ~ 6 m/s. 

Another theory for ligament pinch-off has been proposed by 

Papageorgiou [8], for 1-D Stokes flow, which produces a 

symmetrical ligament profile and a faster but still linear (n = 1) 

radial thinning speed: 

V = 0.0709 (σ/η) (2) 

 

This result may be more relevant for the rupture in the mid-region 

of the ligament, with equation (1) being more applicable to the 

asymmetric collapse close to the meniscus or head of the ligament. 

Radial necking during the constant extension of a Newtonian 

fluid filament has a linear dependence on elapsed time t [9] 

r  =  r0 – (1/6)×(σ/η) t (3) 

 

Differentiation of equation (4) gives stretching filament necking at 

V = 0.1667 (σ/η) (4) 

 

Equations (3) and (4) imply finite break-off times and pinching 

speeds of ~ 40-160 µs and ~ 0.1-0.4 m/s for typical DoD fluid jets. 

Inviscid fluid flow, which may be relevant when the length 

scale is not too small, has been studied by Day, Hinch and Lister 

[10]. The radial (or axial) distance involved scales as τ2/3(σ/ρ)1/3. In 

this case the radius r does not fall linearly with elapsed time t, as 

predicted by equations (1-3), but follows a power law with n = 2/3. 

The pinch-off speed V rises very rapidly just before the break-off: 

V = (2/3)×(σ/ρ)1/3 τ--1/3 (5) 

 

Figure 3 shows predictions for the minimum radius and the 

radial pinching speed for the fluid that was profiled in Figure 1. 

Stretching filament speed equation (4) does not apply to inkjets. 

The simulation speed results show an initial exponential decay that 

appears to limit near to “Eggers” value, equation (1), for a 

significant period before rising to exceed the “Papageorgiou” 

value, equation (2), immediately prior to a final, unseen, pinch-off. 

The Speed-Equation (1) curve slope was found to be linear in fluid 

ratio (σ/η); this dependence is just like that of equations (1) and 

(2): so the break-off time scale essentially scales with (η/σ). 

Simulated dynamics of DoD pinch-off are only similar, rather than 

identical, to the dynamics for filament stretching theories [7-10]. 

 
Figure 3: Results for radial pinching speed and minimum radius of the “inner” 

region extracted from the computational model as a function of the deduced 

time before pinch off. The nozzle (radius 25 µm) was driven to produce ~ 6 m/s 

drops of fluid with η = 0.01 Pa s and σ = 0.025 N/m. Various limits are shown. 
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Computational modeling of ligament pinch-off 
We have used the computational model developed by Harlen 

and Morrison [1,2] to study the effect of fluid viscosity on the 

pinch-off of thin jets for typical drop-on-demand printing 

conditions.  Theories for radial collapse that ignore the viscosity of 

the surrounding air will eventually fail when the ligament becomes 

extremely thin because the interaction between the air and the 

liquid then becomes significant. The ‘Eggers’ regime [7] must 

therefore then give way to the behavior expected for a viscous 

thread within a viscous fluid [12]. However in the present work we 

justify modeling the jet collapse with no external fluid, because the 

final behavior at which air viscosity would be important occurs 

below the minimum scale for the computational grid, and on 

timescales that are negligibly small. 

The model allows a choice of ligament radius below which 

the fluid bodies are assumed to become separated, and will thereby 

slightly underestimate the true break-off time. However, the choice 

of this critical radius makes negligible difference to the predicted 

final drop volumes and speeds.  

We have characterized the predictions of fluid ligament 

collapse in terms of a power law variation of minimum radius with 

time, for which, as discussed above, we would expect n = 2/3 for 

inviscid behavior and n = 1 for viscous behavior. Figure 4 shows a 

transition in the pinching behavior near a viscosity of ~0.020 Pa s 

(~ 20 cP), which is within the range typical of DoD inkjet fluids. 

As shown above, the simulations also predict the ‘outer’ jet 

profile, which is accessible to observation and measurement. 

Interesting predictions include the minimum radial width (or waist) 

of the ‘outer’ profile near the break-off time and, although the 

break-off location shows some dependence on the assumed critical 

radius, the axial location of this ‘outer’ waist. We investigated the 

effects of viscosity on the ‘outer’ region as the ligament radius 

moves towards the ‘inner’ scales.  Figures 5 and 6 both show that 

viscosity would be expected to have a marked effect for DoD 

inkjets, especially for fluids with viscosities above ~ 0.016 Pa s.  

 
Figure 4: Power law index n deduced from the DoD simulation for fluids with 

Newtonian viscosity between 0.001 and 0.030 Pa s (0-30 cP). Simulated fluid 

had the surface tension of 0.025 N/m² although the power law index n results 

were quite similar for other realistic choices of surface tension values. These 

simulations were for a 50 µm diameter DoD nozzle driven for drops at ~ 6 m/s. 

The “inner” fluid behavior changes from inviscid limit n=2/3 towards viscous 

limit n = 1 as the viscosity is increased through a transition value η ~ 0.02 Pa s. 

Dashed curve “Index n” is shown merely as a smooth guide over the transition. 

 
Figure 5: Predictions of the minimum width of the ‘outer’ ligament at the time 

when the jet detaches (i.e. at the ‘inner’ break-off time) for a final drop speed of 

~ 6 m/s. The prediction matches accurately the observed value derived from 

Figure 2 [5] as indicated by the solid lines.  

 
Figure 6: Predictions of the axial location of the waist for the conditions used 

for Figure 5. There is a marked shift in the location of the waist for viscosities 

above ~0.016 Pa s.  Lower viscosities give a waist close to the nozzle exit, 

while for higher viscosities the waist is shifted downstream from the exit. 

Discussion 
The good agreement between the radial pinching speed 

magnitudes and trends in the power law index n with viscosity in 

the simulation and the simple models, together with the 

experimental validation of the ‘outer’ waist size as predicted by the 

simulation, provide confidence in the simulation method. 

In practice the location of jet pinch-off may be influenced by 

the printhead drive waveform and the nozzle firing rate and the 

resulting meniscus position and shape, quite apart from variations 

in these produced by changes to the fluid due to its external 

environment. In the present simulations we assumed the same 

drive waveform for all values of viscosity, altering its amplitude 

only to achieve a final drop speed of ~ 6 m/s.  

The location of the ‘inner’ collapse point is found to shift 

quite rapidly in the axial direction in these simulations, especially 

in the final stages where multiple necks form as seen in the 

formation of falling water droplets from an outlet [6]. This, and 

other work [11], implies that the break-off of DoD jets may also 
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depend rather strongly on viscosity and not conform to models 

which predict stable pinching locations, such as those discussed 

above [7–10]. 

The early stage pinching predicted for Newtonian fluids does 

not follow the linear theoretical predictions [e.g. 9] for a constantly 

stretching filament where elasticity is absent. Even when the strain 

is modified to reflect the measured variation of the inkjet tip speed, 

the range of pinching speeds predicted is only a factor of 2-3 rather 

than the factor of > ~10, as seen in Figure 3 before the ‘plateau’. 

This might be taken in support of the divorce between ‘inner’ and 

‘outer’ regions due to independent radial pinching relationships. 

Studies of filament stretching of viscoelastic fluids [13] 

suggest that the viscosity will also become important for DoD 

jetting of such non-Newtonian liquids. Here, we have restricted 

our attention to Newtonian fluids, without the added complication 

of the viscoelasticity which is present in most real DoD inks. 

Conclusions 
There appears to be a transition between inviscid and viscous 

behavior, which influences the location at which DoD jets break-

off from the nozzle. Ligaments formed from viscous inks may 

rupture far from the nozzle exit, with adverse consequences for the 

reliability of the printing process. The transition in behavior occurs 

at a viscosity of ~0.020 Pa s, which is within the range of ~0.010–

0.040 Pa s typical of most DoD inks formulations. 

Simulations show similarity between DoD break-off and 

ligament rupture in filament stretching experiments, although they 

are not identical.  

The timescale of DoD break-off is controlled by the ratio 

(η/σ) in both the early and main stages of radial collapse. The 

simulation results explain the observed ligament width and the 

location of an ‘outer’ waist for solvent fluids at the break-off time. 

This waist is close to the nozzle exit, and relatively wide, for lower 

viscosity fluids, whereas it moves away and systematically 

becomes thinner for higher viscosity fluids.  

The simulation model developed by Harlen and Morrison 

[1,2] has proved to be successful in predicting several key 

observations and will be used more extensively in future.  
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