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Abstract 
The PSP design technique that we present is, at its core, the 

generalization of structured job data via neural network learning 

techniques.  While current PSP design focuses on the optimal use 

of capital equipment as its primary motivation, the essential 

competitive advantage of digital presses and workflow is its ability 

to adapt to different types of content with highest robustness to 

failure and minimal component-level change; these characteristics 

are also the same for neural networks.  By generalizing the 

fulfillment order with a representative neural network, we can 

automatically identify redundancy between jobs and optimize the 

infrastructure for a particular content mix.  By adaptively 

changing the neural network in the face of different job fulfillment 

demands, the neural network can also indicate how to transform 

the current PSP infrastructure to handle a new mix of jobs 

requests.  We apply a structural learning technique based on a 

subset of Hidden Markov Models, Directed Acyclic Graphics, and 

then map these neural structures into print shop infrastructure. 

 We will demonstrate our results with real world PSP data, and 

compare and contrast the current real world PSP design with its 

neurally designed counterpart. 

Introduction 
The point of the paper is to draw comparisons between neural 

network analysis and digital PSPs. We define the term a digital 

PSP from a broad range of PSP; a digital PSP closely integrates IT 

infrastructure, digital presses and physical processing devices such 

as binders and cutter. PSPs are given a set of orders and must 

process these orders within certain time and cost constraints.  In 

particular, a digital PSP clearly has an IT infrastructure in place to 

primarily source job orders from the Internet, but also has 

significant capital investment in physical infrastructure (presses, 

finishers, binders, etc.). 

Since a digital PSP sources the majority of its orders from the 

Internet, we believe that the PSP fulfillment infrastructure must 

fulfill the constant demands of the Internet, while maintaining a 

capital intensive, but efficient infrastructure. A digital PSP has the 

twin competitive pressure of being flexible to varied short run job 

type, and having their equipment run at maximum efficiency.  How 

can we reconcile these competing demands? 

This paper posits new innovation of directly connecting the 

structure of the PSP to the structure of the content that it is seeing. 

For long runs, we analyze each job as they come in and set up a 

fixed pipeline for each run and amortize these set-up costs per run. 

Many linear estimation models based on the Kalman filter are 

sufficient to forecast production demands in these slow changing 

environments.  For a mixture of short-run content, the pipelines 

and connections of the processing elements within the PSP may 

change in response to the aggregate mixture of the jobs and 

dynamic conditions within the PSP.  We believe that neural 

networks can analyze a digital PSP design because a PSP has 

naturally adaptive elements that integrate digital and physical 

infrastructure with human labor force [1].  

 
Figure 1:A representation of PSP operations as an adaptive network with 

processing steps, the flow of jobs, monitoring and rework. 

To reflect the importance of digital PSP analysis, HP débuted a 

workflow production software package called SmartStream 

Production Analyzer.  Production Analyzer is a real-time press 

monitoring software, with the aim to help PSP’s reach more 

effective, more efficient production from Indigo presses. 

Production Analyzer monitors, tracks and benchmarks the 

performance of Indigo presses, and aggregates press efficiencies 

and inefficiencies in terms of press types, shift, and press groups. It 

provides historical reports of production characteristics (e.g. 

production performance, up time, printing errors). While software 

packages like Production Analyzer centralize data collection on 

PSP operations, we want to go one step further: design PSP based 

upon on the content they receive.   

Representation of PSP Jobs 
In this section, we will be talking about the data structure 

(directed acyclic graphs) that we will be using and how it maps 

onto the structure and PSP infrastructure (as task graphs) [2].   

To formally define the data structure, we will be using some 

basic graph theory terms.  We will be using a subset of graph 

structures to represent the jobs: directed acyclic graphs (DAG). A 

DAG is a set of vertices and edges.  The vertices in the graph 

represent progress points of the job fulfillment.  The graph is 

directed: the edge (E) is represented as an ordered pair of vertices 

(V1, V2), called head and tail, respectively.    

E = (Vh ,Vt );Vh = head(E);Vt = tail(E)  (1) 
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An edge represents a processing step in job fulfillment.  Let us 

define a substructure called a path (P) as sequence of edges (of 

arbitrary length) from the set of the DAG: 

P = [E1, E2,E3,..., En ]  (2) 

such that 

tail(E i) = head(E i+1),i =1,2,...(n −1)          

(3) 

In a directed acyclic graph, there exists no path (P) that has the 

same beginning and end, i.e. a cycle. 

∀P,head(E1) ≠ tail(En )  (4)  

While the Directed Acyclic Graph is a general data structure 

we use, the mapping of a directed acyclic graph onto job going 

through a processing step is called a task graph [Ref to TGFF].  

As mentioned before, the vertices represent a state of after 

processing that has been reached by part or all of the job.  The 

edges represents the processing that is applied during that step to 

all; the head vertex of the edge represent the processing 

dependencies that need to be satisfied before the current 

processing of the edge is to be applied.  The tail of the edge 

represents the change in state after the processing of the edge is 

applied.   

In figure 3, we show a simple task-graph that represents the 

building of a book.  In the case of PSP, a job for a book can be 

divided into the printing of the book block and the printing of the 

cover.  The book block has to be glued before it is bound together 

into a single book.  The task graph captures all these dependencies 

while being careful not to enforce a strict ordering between the 

printing of the book and cover.  Either the book block or cover 

may be printed first, or both may be printed simultaneously.  

However, before a book can be put together, we must have glued 

book block and a cover ready.  In our particular case, every task 

graph has a node that represents the start and finish state of the 

given job.  Task graphs are the abstract representation of choice for 

representing multiple processing steps. 

Problem Statement 
We characterize the PSP into two passes.  In the first pass, we 

define the input and output of the neural network that will define 

the structure of PSP; in the second pass, we define the capacity 

planning cost function with simplifying assumptions, and the 

output of the capacity planning.   

The input and output of the neural network is defined as 

follows.  Input to the neural network is the set of task graphs that 

represent the jobs that are to be processed by a given structure.  

The output of the neural network is basic connectivity of the 

processing elements within the PSP, number of elements in each 

processing element pools and connectivity between elements, 

represented by single task graph with capacities on each edge. 

Once we have set the structure and connectivity of the PSP; 

we can then do scheduling optimization with respect to a cost 

function that contains the types of different processing elements, 

the cost of each processing elements, their processing and upkeep 

costs per time unit, and their relative processing times.  Also, we 

simplify the problem in the follow ways: 

1. We assume we own all resources from the time of the 

beginning of the job to the end; cost is for the whole 

time 

2. There are no deadlines on the jobs.   

3. We can purchase and fit as many processing units as 

possible 

4. We will not share processing elements across multiple 

pools 

We can, of course, remove these simplifications as will be 

discussed in our conclusion. 

Our Solution: DAGs as Neural Network  
We use a four-step technique for the structural reduction of a 

DAG, a single task graph that represents all jobs to drive the basic 

structure of the PSP.  The steps are 1) the creation of an overall 

parallel network of things, 2) a scoring function to set the tolerance 

on how the graphs can be reduced, 3) the identification of 

exception processes and data error, and 4) the capacity planning 

with the simplified elements shown above. 

As shown in figure 2a, the creation of the initial graph is 

relatively straightforward: we form a single task-graph formed by 

joining all the start vertices of each task graph into one global start 

vertex and all the finish vertices into one global finish vertex.  It is 

straightforward to show that this global graph still maintains all the 

properties associated with a task-graph. Now that the total 

information about all jobs is contained in one graph we can work it 

properly. 

Our cost functions are straightforward as well.   In the simple 

case, we match edges by merely matching the processing type 

associated with the edges.  Since the processing methods are all 

mutually exclusive of each other; this learning operation merely 

merge the edges by accumulating the number of edges in a counter 

that go between the same two vertices and degenerates to edges 

with a count for each edge type.  In the general case, we can give a 

score related to how well two processes match up in a look-up 

table or analytically.   In either case, when we have a well-defined 

cost function, we can now apply the structural learning algorithms 

F
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[6] to automatically find redundancies and minimize the size of the 

total job task graph, as shown in figure 2b,2c, and 2d. 

igure 2: Example of four basic steps of DAG-Learning 
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When we receive the structurally reduced job task graph, we 

can now recognize exceptions by finding the amount of flow 

through any given part of the sub-graph.  We can easily calculate a 

flow matrix from every vertex to the other things with this simple 

formula.   All edges that are non-zero, but below a given threshold 

can be flagged exceptions and any task graph original jobs that 

have these flagged processes can then be flagged as an exceptional 

job and further analysis can be done to determine whether they are 

errors or whether they should be considered something else. 

     Once the connectivity of the PSP is set, we can now work on 

the capacities of each edge.  If we consider the jobs in aggregate, 

we just take the highest relative strength of the processing unit per 

each and add one to each while quantizing each unit to the nearest 

whole number.   We can analytically get a static capacity number, 

or else we can run a simple simulation of for a given optimal 

scheduling, taking into account pipeline and optimal scheduling. 

Note that we can expand this problem to include both start time 

and deadlines and cost function associated with that.  We will 

analyze these issues in our next section how to expand these 

things.  For the general case, we may attempt to a DAG-covering 

for more optimal capacity planning [5]. 

 
Figure 3: Book Printing Job as Task Graph or DAG; edges are processing, 
vertices are points of progress 

Results 
We will present our full results at the NIP26 conference. 

Conclusion 
PSP are naturally adaptive systems that contain within them 

human labor and control, and will become even more so when 

enabled with the deeper integration of digital presses and Internet 

technologies.  The industry has understood the technological 

impact of digital presses, but has yet to fully appreciate how they 

can make the PSP infrastructure flexible and agile to match their 

connectivity to the Internet.   

While capital investment demands structural efficiency, we 

believe that the core value proposition of a PSP is to be flexible 

and adaptive to internet content that has no inherent model.   Here 

neural networks and their algorithms embody the best of both 

worlds: a fixed structure that adapts its connectivity to handle the 

changing inputs robustly.   

We have presented a method to obtain the recommended 

structure and connectivity of the flow of work in a PSP based on 

the pool of submitted jobs.  As previously mentioned, the result is 

assuming a minimal set of requirements to arrive at a solution 

under an ideal scenario.  While useful in planning a new factory 

layout, in practice, this output needs to conform to the physical 

limitation and the optimizing parameters of the PSP at that time to 

provide some real advantage.  The next step consists of narrowing 

the solution by taking into account the physical limitation such as 

existing equipment pool and labor force available, and transport of 

the parts.  On another level, the cost associated with job deadlines, 

equipment set-up and utilization is important to account for in the 

optimization step.  On the connectivity side, we so far assumed 

that the equipment is used exclusively within a pool.  The reality is 

much more complex.  While valid for certain processes, for others 

such as some types of finishing equipment, the processing 

elements are shared across multiple pools.   Finally, the window of 

jobs used and the refresh rate also needs to be studied.  The initial 

results are encouraging and the combination of DAG with neural 

networks provides an interesting platform to solve the duality of 

high adaptability and high efficiency which is unique to the PSP 

manufacturing space. 
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