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Abstract 
Print manufacturing is a make-to-order process; it converts 

customers’ print demands into shipped print products such as 

books, calendars, and stationeries. Its service level objectives are 

usually dominated by the on-time delivery constraint. Given the 

existing resource makeup, the business objective of the print 

service providers is to drive up the throughput to dilute the fixed 

cost and maximize the profit while guarantees the quality of 

service.  

The print manufacturing process outlined above, in particular 

on-demand digital print, cannot be simply treated as a standard 

manufacturing activity. The highly variable and dynamic nature of 

the job mix combined with personalized customer requirements 

results in numerous combinations of factory configuration and 

business philosophy.  This has been identified as a key reason that 

hinders the print productivity growth. In this paper we report our 

recent development of a simulation platform of digital print 

manufacturing operations adopting an open-source electronic 

design automation tool, and shed light into paths towards 

implementing a lean print manufacturing paradigm. 

 
Keywords 

Digital print production system, lean manufacturing, 

numerical simulation, operations modeling 

Introduction  
Commercial print has annual retail sales over US$700B. It is 

a major business focus for HP. General commercial print is 

observing a secular trend: the job run-length gets shorter; the 

significant setup cost of the plate creation is making analog press 

less economical for a growing number of jobs. This is further 

validated by the predictions made by industry experts during this 

year’s International Congress on Imaging Sciences [1], that, the 

paradigm shift in commercial print will be “not a massive decrease 

in the use of print but clearly indicate a massive change in the use 

of print”, more precisely, the ever growing demand for “mass 

customization and personalization of print”. These all point 

towards the promise that the digital print will be the driver for the 

future growth of print.  

Digital print, foremost, refers to marking technologies that do 

not involve a makeready procedure (without a physical printing 

plate with a fixed image), which is usually a costly procedure in 

both time and material. Example digital print marking technologies 

include electrophotography and ink jet. The term “digital print” 

also refers to the “just in time” print manufacturing practices that 

are uniquely enabled by digital print marking technologies and 

make fulfilling short run-length jobs economical even to the 

extreme of “batch of one”.[2] As a pioneer and leader of digital 

print, HP's strategic position in driving up its print growth is 

through accelerating the analog to digital print conversion and by 

improving the unit profitability in commercial print. While great 

progresses have been made in the printing technologies, there are 

still technological barriers in print manufacturing operations 

management tools and methods.  

The sketch at top of Fig. 1 outlines the print consumption eco-

system. The explosive volume and diversity of printable digital 

contents drives the print manufacturing transitioning towards a 

form of mass customization fulfillment [3] rather than the 

conventional streamline manufacturing targeted at high volume but 

limited diversity products. As the demand fulfillment arm, the print 

service provider needs to adjust its capacity planning and 

operations policies to accommodate the variability in demand 

characteristics. The bottom sketch zooms in print manufacturing 

process. It illustrates an example end-to-end workflow within one 

print service provider. The customers’ requests for prints are 

submitted through the store front. This includes customers’ 

Figure 1: Commercial print. Top: the print consumption eco-

system. Bottom: a typical end-to-end print workflow within a 

print service provider. 
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physical visits, and, increasingly, jobs submitted electronically 

through the internet (web-to-print, for instance, www.blurb.com, 

www.snapfish.com). Once accepted, a unique job ticket is assigned. 

A job ticket usually contains a job number, number of copies, due 

dates, prices and payments, client information, inks and presses, 

finishing, and shipping methods. The submitted electronic files 

(e.g., pdfs and tiffs) are examined for the correctness (preflight), 

edited for color quality and accuracy, imposed, and flattened and 

half-toned (raster imaging process) to create the bitmaps. Printer-

ready electronic files are then sent to the printers to produce 

physical copies. Printed sheets or web are first singulated into 

printed pages which are then folded, collated, and bound into book 

blocks. The book blocks are joined to book covers. The finished 

books are then sorted, labeled, and shipped.  

Print manufacturing process outlined above demands both 

product diversity and mass manufacturing, and is both capital-

intensive and labor-intensive. The print orders are usually high 

frequency, low volume, and short time to allow for fulfillment. The 

highly variable and dynamic job mix and highly personalized 

customer requirements calls for a modern, data-driven decision-

making paradigm for the print manufacturing operations.  

In this paper, we describe a holistic, model-based approach 

that provides quantitative prediction and analyses of the print 

manufacturing operations. [4] The print service provider is 

modeled as a heterogeneous, concurrent, integrated system, 

accounting for the performance, efficiency, stability, and 

sustainability as organic system attributes. We illustrate example 

applications of this model-based approach to provide operational 

level assistance in the ever-changing dynamics of the production 

floor, and contribute to providing automated digital commercial 

print solution. 

Operations Modeling 
The scope of this modeling effort is the fulfillment of the print 

consumption eco-system, that is, the print manufacturing 

operations within a print service provider. Per the argument given 

above, our attention is primarily given to digital printers that 

practice print on-demand. The starting point of this modeling 

exercise is to extract only the first-order effects and reduce the 

problem dimensions to minimal so that we can formalize this 

problem mathematically. Fig. 2 illustrates the minimal set of the 

characteristics required to fully define and re-construct a print 

operation: 

a) Admitted orders. An order can be a JDF [5a] file directly 

created in Acrobat during the content creation stage. It may also be 

in other forms of XML [5b] or PPML [5c] file format of which has 

been negotiated upon beforehand between the print service 

providers and their upstream digital content providers. An order 

describes complete fulfillment specifications in addition to other 

information. These specifications are then used in a print 

manufacturing environment to produce and ship the final printed 

product. The customer information including shipping and 

payment provides a financial measurement of late penalty, for 

instance, the costing to upgrade shipping method to make up the 

manufacturing delay. The service level is primarily determined by 

the possible late shipment (the ShippedDate is later than the 

ExpectedshipDate). A floor manager (a person or automated 

factory floor management software) may raise the priority of an 

Machine Type Tasks Fulfilled Quantity
Performance 

(mean)

Performance 

(std)
Interruption

SRS Servers State 3 � State 4 10 1 sheet/second … no

Indigo 5000
State 5 � State 6, 

book block
6 1 sheet/second …

operator break; 

service break; 

paper jam. 

Indigo WS6000
State 5 � State 6, 

book cover
1 0.5 meter/second …

operator break; 

service break; 

paper jam. 

Duplo DC-645
State 5 � State 6, 

book cover
2 0.4 sheet/second …

operator break; 

service break; 

malfunction.

Duplo DPB-500 State 7 � State 8 4 0.1 cycle/second …

operator break; 

service break; 

malfunction. 

…… …… …… …… … ……

Worker: shift A al l 16 …… …

[6AM, 2:30PM], 15-

minute breaks at 

8AM, 10:30AM, 

12:30PM

Worker: shift B al l 10 …… …

[ 2:30PM, 11PM], 

15-minute breaks 

at 5PM, 7PM, 9PM

(c) Makeup of resources.

Figure 2: Model characterization of a print manufacturing operation. 
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order so that it jumps ahead of the queue when seeing its 

ExpectedshipDate is approaching and there is a danger to be late. 

The AcceptedDate may not necessarily be the time that the order 

has to be released to the factory floor. Order release mechanisms 

attempt to dampen the volatility of order arrivals. The payload 

provides the complete specification of the manufacturing process. 

For each book within this order, a FulfillmentPathID (also see Fig. 

2b) specifies a particular workflow.  

b) Set of all possible fulfillment paths. Product customization 

and personalization is one of the principal challenges to the digital 

print productivity. To enable productivity optimization yet 

simultaneously accommodating product diversity, one approach is 

to narrow the fulfillment to a handful product types that contribute 

to most of the revenue according to past order history and 

marketing forecast. [6] This list of product types is then used to 

guide the optimization of the factory floor and order admission.   

Each product type has its pre-defined fulfillment path; resources 

are shared among different fulfillment paths whenever optimal. 

Fig. 2b indicates a tree structure of depth three: the root node 

is an order; each order contains multiple book types, which are its 

children nodes; each book may be composed of multiple parts 

(e.g., a cover and a book block), which are the leaf nodes. Fig. 2b 

illustrates one particular digital print factory. An order breaks into 

book tokens at the switch after state 4; a book token breaks into 

part tokens after state 5; corresponding parts assemble into a took 

token after state 7; and multiple book tokens assemble into an 

order token after state 10. 

c) Available resources. The fulfillment paths illustrated in 

Fig. 2b must be further augmented with the list of resources that 

map the tasks demanded by the fulfillment paths with the 

"workers” — including software, automated machines, operator-

assisted machines, and operators — that carry out the respective 

tasks.  

d) Runtime policies that guide real-time operations. Usually 

there are multiple orders released to the factory floor 

simultaneously and they compete for resources, priorities for 

services need to be given to urgent orders — order sequencing is a 

rule or algorithm that calculates the order urgency according to the 

operations objective and orders' attributes (see Fig. 2a). Similarly 

there may be multiple machines that can fulfill the same task (see 

Fig. 2c), priorities for the task assignment need to be given to the 

most effective machines orders  — order assignment or resource 

binding is a rule or algorithm that calculates the machine 

effectiveness according to the operations objective and machines' 

attributes and states. Exception handling specifies the faulty rate of 

each resource and rules or algorithms that guide rework such that 

the production setbacks caused by the faulty works are minimized. 

Machines may be interrupted due to services or breakdown; 

fulfillment path reconfiguration deals with dynamically re-routing 

orders such that the production setbacks caused by the machine 

interruption are minimized. 

Fig. 3a illustrates the architecture of the operations simulation 

software developed for commercial print services and print 

manufacturing. The order stream is acquired from printers' 

enterprise resource management system; the fulfillment paths, 

resources and the operating policies are programmed using an open 

source code Ptolemy, electronic design automation software 

developed by University of California, Berkeley. [7] Fig. 3b and 3c 
show example results that apply visual analytics tools (VisTS and 

PixelBarChart, both developed by Hewlett Packard Laboratories 

R
e
p
ri
n
ts

(a) Simulation software for digital print manufacturing. 

Figure 3: Simulation of digital print manufacturing. The 

example simulation shown in (b) and (c) uses direct inputs and 

measurements from a digital printer partner. 

(c) Multi-level order statistics of a subset of product types of interest (e. g., 

products with high margin). High activity area is automatically marked. 

(b) Time series of machine activities. The horizontal axis is the date; vertical 

axis is list of machines under surveillance; bar volume indicates event 

frequency; color indicates event intensity. 
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[8]) to query the massive site data generated by the simulation. We 

are looking into integrating the simulation and the visual analytics 

tools into a single view of a dashboard that can display both the 

factory level performance and cell-machine level dynamics, and 

provide automated query and correlation discovery among 

different attributes.    

Lean Print Manufacturing: “what's in a name?”  
Originated from the manufacturing practices perfected by 

Toyota, lean manufacturing [9] became a highly celebrated term in 

1990s owing to its success in seemingly different sectors from 

aerospace industry to hospital service management. In recent years, 

the application of lean philosophy to print production has been 

investigated by both print technology vendors (e.g., [10]) and 

digital print service providers.  

Many lean preaching come in the form of lists of detailed 

operations rules (e.g., “seven zeros” [11]). However it is critically 

important to understand that the lean rules are negotiable and only 

means to an end. [12] From systems dynamics perspective, the lean 

rules are a set of implementation solutions of a systems 

optimization problem. In print, the operations frontier can be 

described by its unit cost, faulty rates, product diversity and service 

level, which can be further deduced into measurable optimization 

objective: maximizing right throughput in terms of prioritized 

product types, and minimizing inventory and operational expense. 

The optimization space is defined by all the flexibilities within the 

print manufacturing system, as illustrated in Fig. 2. Digital print 

holds a unique, additional dimension in its optimization space: it is 

economical to dynamically reconfigure the fulfillment paths in the 

event of machine failure, surge of certain product type, or driven 

by other motivations in pursuing the system optimization 

objective. 

The operations simulation can pave ways to accelerate lean 

adoption in digital print: it can serve as a verification tool before 

various lean rules be implemented at factory floor, a performance 

measurement component within a system optimization 

infrastructure, a platform to implement collaborative planning, 

forecasting and replenishment (CPFR), and supplemental to 

management intuition. The following illustrates an application 

example of operations simulations. “Zero surging” [11] is one of 

the principal lean rules demanding smooth manufacturing flow. 

This is particularly challenging for digital print as there exists 

intrinsic uncertainty and variability in customers’ demand. 

Therefore, a smart management of an order buffer is required to 

de-couple the highly volatile demand flow and downstream smooth 

manufacturing flow accounting for the service level requirement. 

Simulations have been successfully applied to choose an optimal 

order pool management solution.  
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