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Abstract 
Pd hexadecanethiolate and Pd butanethiolate precursors as well as 
single-walled carbon nanotubes (SWCNTS) functionalized with 
single-strand DNA (ssDNA) were patterned using inkjet printing 
techniques to form metallic Pd interconnects upon thermolysis and 
circuit elements, respectively. Issues involved with printing these 
materials were addressed and overcome. Patterns with lateral 
dimensions of ≈50 μm were produced. The surface morphology of the 
Pd interconnects was examined using SEM. By printing 4-probe 
pattern of Pd alkanethiolates, the resistance as a function precursor 
concentration was determined, allowing estimates for the resistivity 
of the printed interconnects. A line trace containing an aqueous 
suspension of SWCNTs-ssDNA was inkjet printed for resistivity 
estimates and contacted with Pd pads. 

Introduction  
Since the early 1970’s, inkjet technology has proven useful for 

the patterned deposition of liquid materials, including polymers and 
metal solutions in the fabrication of electronics and the 
functionalization of biomedical materials [1, 2]. Direct ink writing 
offers an attractive alternative for meeting the demanding design 
rules and form factors required in printed electronic and 
optoelectronic devices. Inkjet printing offers an attractive fabrication 
method because of its short processing time, low production cost, 
applicability to non-planar substrates, and diminutive environmental 
impact, particularly when compared to photolithographic techniques. 
For these reasons, it is generally recognized that inkjet printing is 
simpler, more environmentally friendly, and cost effective in contrast 
to vacuum-based methods [3].  

Noble metals have been tested for inkjet printing applications, 
and the most commonly used inks are comprised of metal 
nanoparticles. An alternative is to print a metal salt and a reducing 
agent sequentially. In the case of nanoparticle inks, the printed 
patterns are subjected to sintering either by heating to 100-550°C [4, 
5], by applying voltages [6], or by laser curing [7]. Allen et al. [6] 
used a nanoparticle ink containing 34.5 wt% Ag nanoparticles, with 
particle diameters of 10–20 nm, dispersed in triethylene glycol 
monoethyl ether. To obtain an electrical conductivity close to that of 
bulk, an external voltage was applied to sinter the nanoparticles. The 
use of silver nitrate with the reducing agent ascorbic acid to form Ag 
patterns has been demonstrated previously [8]. Chow et al. [9] used a 
mixture of two solvents to print uniform Au nanoparticles patterns on 
a glass substrate. Shah et al. [10] used inkjet printing on transparent 
plastic sheets to pattern Pt colloids as a catalyst for electroless Cu 
metallization. Printing Cu nanoparticles is difficult as the printed 

patterns easily oxidize. Cu nanoparticles have been mixed with Ag 
and printed as described by Woo et al. [3]. They developed a Cu-Ag-
based mixed metal conductive ink by using Cu and Ag nanoparticles 
at varying volume ratios from 2:1 to 4:1, printed on a flexible plastic 
substrate and annealed at 175-210 °C to obtain conductive patterns. 
Li et al. [11] printed Cu/Ni patterns using an aqueous Cu/Ni salt 
solution and a reducing agent of sodium borohydride in two separate 
compartments. 

There are a few reports on inkjet printing of Pd, which is often 
employed as a catalyst layer for the electrochemical deposition of 
other metals. Zabetakis et al. [12] used a commercial Pd-Sn 
electroless catalyst, Cataposit 44 (Rohm & Haas), to print a Pd 
catalyst on paper. Recently, Busato et al. [13] used ionic PdCl2 as the 
source of Pd and printed a pattern on polyimide. The patterns were 
baked at 60 ºC for 15 minutes. Reduction of the surface-bound Pd(II) 
to metallic Pd(0) was accomplished by immersion into 0.1 M sodium 
borohydride at room temperature for 5 minutes.  

In what follows, we report on the development of a new type of 
ink made from an organic precursor of Pd, namely Pd 
alkanethiolates. Previously, this precursor has been used as a highly 
sensitive resist for electron beam lithography. This chemical is 
soluble in most organic solvents and may form a new class of inks for 
printing [14]. A further advantage of this ink is that the precursor 
upon heating to 230 ºC forms a pure metal [15].  

There are two issues related to the printing both Pd 
alkanethiolates and SWCNT-ssDNA. Firstly, if the concentration of 
the ink is too high, then the viscosity of the solutions becomes so 
large that the nozzles are likely to get clogged easily compared to 
lower concentration ink. Secondly, when printing these materials 
onto non-absorbing substrates, coalescence causes problems with 
printing continuous lines, thus detrimentally reducing the reliability 
and repeatability of the printed patterns. Another problem associated 
with Pd alkanethiolate ink was upon thermolysis, there was some 
shrinkage in the pattern causing discontinuity in the printed pattern. 
Particular to the SWCNTs-ssDNA is the issue with dissolving the 
SWCNTs into an aqueous medium. This paper addresses the 
aforementioned issues in order to realize successfully printing these 
two materials via inkjet for the first time. 

Experimental Setup 
Preparation of palladium alkanethiolates 

Palladium alkanethiolate precursor was prepared by mixing an 
equimolar ratio of Pd acetate and alkanethiol (butyl or hexadecyl), 
both dissolved in toluene. Following the reaction, the solution 
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became viscous, and the yellow color deepened to orange-yellow 
[14] indicating that hexadecanethiolate (Pd(SC16H35)2) or 
butanethiolate (Pd(SC4H9)2) had formed. The obtained alkanethiolate 
was dissolved in toluene to make inks with different concentrations 
ranging from 50 - 600 mM. The substrates employed for the inkjet 
printing were oxidized silicon (SiO2/Si) wafers. The patterns were 
thermolysed in an oven at 230 ºC under ambient atmosphere for 1 
hour before further characterization.  

Preparation of SWCNTs-ssDNA 
The preparation of SWCNTs-ssDNA is described in detailed 

elsewhere [16, 17]. Briefly, SWCNTs were purchased from Unidym, 
Inc. and used as received. ssDNA was purchased from Integrated 
DNA Technologies, Inc. All other chemicals were purchased from 
Sigma-Aldrich. SWCNTs and ssDNA (1:1 wt/wt) were combined in 
phosphate buffered saline solution (PBS) (8 mL) and placed in a 15 
mL polypropylene centrifuge tube. The mixture was placed on ice 
and sonicated for 120 minutes (Sonics Model VC 130) at 80% 
amplitude using a 6 mm diameter probe tip. The solution was then 
separated into seven 1 mL aliquots and centrifuged at 16,000 g for 90 
minutes. The supernatant was carefully removed from each aliquot 
and combined into three Millipore Amicon® Ultra-4 centrifugal filter 
devices (molecular weight cut-off 100 kDa). The samples were 
desalted according to the manufacturer’s protocol using ultra-pure 
water as the desalting solvent. The concentrated, desalted samples 
were collected, combined and stored at room temperature. 

Inkjet printing of palladium alekanethiolates and 
SWCNTs-ssDNA 

The inkjet system used for this study is shown in Figure 1. It 
contains an XY motorized stage with an encoder resolution of 0.5 
μm, an HP TIPS thermal inkjet drop ejection system with pens 
containing up to 18 nozzles that can produce drops in the range of 1 – 
220 pL per nozzle at an ejection frequency as high as 45 kHz, a CCD 
imaging system for viewing drop generation, and a laser registration 
system used for mapping out the position and orientation of 
substrates [18]. With this system, patterns can be easily formed, 
ranging from a periodic array of dots, to continuous lines, to complex 
patterns suitable for microelectronic applications. Printing times 
ranged from seconds to minutes, depending on the complexity and 
fidelity of the pattern desired. 

While printing Pd alkanethiolate ink, to avoid clogging of 
nozzles, the concentration of solution was chosen such that it was 
ejectable from the nozzles in a reliable and repeatable manner. By 
controlling the concentration the viscosity was kept under control. 
For the Pd hexadecanethiolate, a concentration as high as 600 mM 
was printed while the more viscous ink, namely the Pd 
butanethiolate, was limited to less than 600 mM. In order to address 
the problem of coalescence, multiple-pass printing was invoked, 
more specifically, two-pass printing. For example, in order to print a 
continuous line all of the odd pixels of the line are filled with ink on 
the first pass, followed by the filling of the even pixels with ink on 
the second pass. A delay time of approximately 15 seconds between 
the two passes is sufficient time for the solvent to evaporate, thus 
reducing the surface tension enough so that coalescence does not 
occur. More on multiple-pass printing can be found elsewhere [19]. 
The issue of pattern shrinkage during thermolysis was overcome by 
using the printing technique of multiple layers [20]. The example of 

printing a line explained above is considered one layer. To make 
multiple layers, this process was simply repeated until the required 
number of layers is achieved. All results in this paper are reported 
with five layers unless otherwise mentioned. The shrinkage of 
patterns arises due to the phase change of Pd alkanethiolate during 
thermolysis to pure metal. Upon thermolysis, the solvent is 
evaporated followed by the decomposition of Pd alkanethiolate to 
release the hydrocarbon and leaving behind the Pd metal. If there was 
not enough material printed, then the printed pattern will appear 
discontinuous due to the loss of mass. Printing multiple layers of Pd 
alkanethiolate ensured that there is enough material so that forces 
causing this phenomenon are negligible. 

 
Figure 1. Inkjet System used Including (1) XY Motorized Stage, (2) Drop 
Ejection System, (3) Laser Registration System,  (4) Imaging System.  

The issues associated with printing SWCNTs in an aqueous 
solution are non-uniformity of SWCNTs in water, coalescence, and 
clogged nozzles. The methods for overcoming the coalescence and 
clogged nozzle issues are exactly the same as those mentioned with 
the printing Pd alkanethiolates. The ejectable concentration for the 
SWCNTs-ssDNA is less than 0.95 mg/mL. Non-uniformity of 
SWCNTs in water exists because of the hydrophobic behavior of 
SWCNTs. Functionalizing SWCNTs with ssDNA makes the material 
hydrophilic due to the sugar phosphate backbone of the ssDNA[16, 
17].  

Results and Discussion 
The inkjet printed patterns of Pd alkanethiolates were 

thermolysed at 230 ºC to obtain metallic Pd. To characterize the 
electrical quality of the printed patterns, a four-probe resistivity 
measurement was performed on a five-layer inkjet-printed line 
pattern (190 μm wide) containing four integrated contact pads. A 
constant current in the range of 0.05 - 0.70 mA was applied across 
the outer two contact pads while the voltage drop was measured 
between inner two contact pads, which were 1.5 mm apart.  

Figure 2 shows the variation in thickness as well as resistance as 
a function of precursor concentration for both precursors. As shown 
in Figure 2(a), thickness measurements using a profilometer (Alpha-
Step IQ) revealed a systematic variation in line thickness for the 
different precursor concentrations of Pd hexadecanethiolate. The 
thickness was 413 nm for 600 mM and dropped to 66 nm for 50 mM 
concentration. The variation in resistance as a function of 
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concentration is also plotted in Figure 2(a). The resistances were 
measured to be 103 Ω and 665 Ω for the highest (600 mM) and 
lowest (50 mM) concentrations, respectively. The highest 
concentration of butanethiolate that could be printed was 300 mM; 
attempts to use a 600 mM solution failed because the high viscosity 
prevented reliable inkjet drop formation. The results for the 
butanethiolate ink are given in Figure 2(b). The variation in thickness 
of the pattern for different concentrations reveals that for a low 
concentration of 50 mM, the pattern thickness is found to be 49 nm 
and for the highest concentration (300 mM), it is 186 nm. The 
variation in resistance follows the same trend observed for the 
hexadecanethiolate precursor. From the known geometry of the 
pattern, the resistivity is found to be (4.6 ± 0.8) x 10-6 Ω•m for 
hexadecanethiolate precursor and (2.5 ± 0.4) x 10-6 Ω•m for 
butanethiolate. The bulk resistivity of Pd metal is 1.05 x 10-7 Ω•m. 
The lower resistivity value for butanethiolate in spite of the particle 
connectivity being poorer may be due to the bigger particle size in 
comparison to hexadecanethiolate. Earlier studies of Pd 
hexadecanethiolate as a highly sensitive e-beam resist showed that 
the resistivity of an e-beam fabricated line pattern had a resistivity 
approximately 3 times greater than bulk [15]. Other studies involving 
patterning Pd by e-beam lithography have reported resistivity values 
of 100 x 10-6 Ω•m [21] and 417 x 10-6 Ω•m [22].  

 
Figure 2. A  plot showing the variation in thickness and resistance with 
concentration of the ink, (a) Pd hexadecanethiolate and (b) Pd butanethiolate. 
Inset showing respective SEM images. 

The morphology of a thermolysed pattern obtained from 150 
mM concentration is shown in insets of Figure 2. SEM images 
(Hitachi S-4800 field emission scanning electron microscope) show 
that thermolysis of Pd hexadecanethiolate (see inset Figure 2a) leads 
to the formation of nanogranular smooth films with the nanoparticle 
sizes varying between 20 and 30 nm. In the case of butanethiolate 
(see inset Figure 2b), the pattern is somewhat rougher, with the 
particle size in the 35-50 nm range. The reason for the change in 

particle size is likely that the longer alkylchain length precursor 
forms a self-assembled bilayer while the shorter alkyl chain precursor 
cannot [14].  

Energy dispersive spectroscopy (EDS) was performed on the 
patterns before and after thermolysis. These experiments showed that 
the carbon content in the hexadecanethiolate precursor before 
thermolysis was 70% and dropped to 7% after thermolysis. A similar 
trend was observed in the case of butanethiolate which had initially a 
39% carbon content that dropped to 6% upon thermolysis. Initially, 
the sulfur content was found to be 12% and 15% for 
hexadecanethiolate and butanethiolate precursors respectively. These 
values drop below 1% after thermolysis. The results indicate that 
thermolysis is an important step to obtain metallic Pd patterns from a 
metal organic precursor.  

 

Figure 3. SEM images showing (a) smallest dot patterns printed using Pd 
hexadecanethiolate (150 mM); inset showing two close dots and (b) fine lines 
patterns. 

Figure 3 shows a few dot and line patterns generated by inkjet 
printing with 150 mM solution of the hexadecanethiolate precursor. 
Figure 3(a) shows uniform dots with 50-60 μm diameters. As 
illustrated in the inset, the separation between the dots is found to be 
2.7 μm. Figure 3(b) shows that 50-60 μm thick continuous lines can 
be printed. To demonstrate the diverse applications of this Pd 
alkanethiolate ink, printing has also been successfully achieved on 
flexible Kapton® substrates. 

Figure 4. I-V plot showing the conducting nature of CNT across the Pd 
electrodes. Inset showing SEM image of a circuit printed by Inkjet printing, the 
contact pads are made of Pd and the active element across the pads is DNA 
wrapped CNTs.   
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Separate experiments were performed to investigate the 
potential of inkjet printing for nanoelectronic applications. One of the 
many useful properties of single wall carbon nanotubes (SWCNTs) is 
their gage factor, which has been shown to be ~1000 or larger [23]. 
In our demonstration experiments, a network of SWCNTs was 
formed by printing two layers of an aqueous solution of SWCNTs 
wrapped with single-stranded DNA (ssDNA). Then, Pd 
alkanethiolate electrodes were printed to form electrical contact pads 
to either end of the SWCNT network. The thickness the SWCNTs-
ssDNA pattern was found to be ~11 nm. The printed electrical circuit 
is shown as an inset in Figure 4. The contact pads made of Pd are 1 
mm2 in size and are printed 2 mm apart. These contact pads facilitate 
an electrical measurement of the 60 μm wide SWCNTs-ssDNA trace. 
I(V) measurements reveal the conducting nature of the randomly 
interconnected SWCNTs-ssDNA (see Figure 4). The I(V) plot in 
Figure 4 is linear and the resistance is found to be 2.14 M Ω. With the 
known dimensions of the pattern, the resistivity turns out to be 1.14 x 
10-3 Ω•m. 

Conclusion 
Inkjet printing of Pd alkanethiolates and an aqueous solution of 

SWCNTs-ssDNA was achieved. The printing issues such as 
coalescence and nozzle-clogging with these materials were addressed 
and overcome by two-pass printing and concentration studies, 
respectively. Line separation of the Pd alkanethiolates was overcome 
by the printing of multiple layers while the hydrophobic behavior of 
SWCNTs in water is overcome by functionalizing the SWCNTs with 
ssDNA.  The electrical properties of inkjet printed patterns of these 
materials have been investigated.  The linear patterns of the Pd 
alkanethiolates obtained after thermolysis exhibit metallic conduction 
and have a resistivity value only one order of magnitude greater than 
the bulk resistivity of pure, bulk Pd. The resistivity of the SWCNTs-
ssDNA is 1.18 x 10-3 Ω•m. Lines and dots of Pd alkanethiolates and 
SWCNTs-ssDNA with diameters of 50-60 μm can easily be printed. 
Insulating gaps between adjacent dots of Pd alkanethiolates can be as 
small as 2.7 μm. Future applications of Pd inkjet patterns range from 
circuit interconnects, the production of patterned surface-enhanced 
Raman substrates, or spatially printed catalysts for nanowire growth. 
Inkjet printed patterns of SWCNTs-ssDNA will be used for future 
electrical circuitry and strain gage applications.   
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