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Abstract 
Vascularization arguably poses the most significant hurdle 

for the success of most biomaterials-based tissue engineering 
therapies. In this work, we report two printing strategies that 
permit the 3D Inkjet printing of fluorescent alginate hydrogels into 
overhanging structures and closed lumens that could serve as 
vessel mimetics. The first is 4-Matrix printing, where the order of 
droplet printing in each printing layer is optimized so that new 
droplets do not coalesce with un-gelled droplets on the surface. 
The second is the use of incremental droplet spacing to print 
overhanging and closed structures in order to reduce the degree of 
down-wall flow. 

Printed 3D structures were examined by 3D confocal 
microscopy in order to determine the effectiveness of these printing 
strategies. The results are promising and might be applied to other 
rapidly gelling hydrogel systems. 

Introduction 
Recently, 3D inkjet printing has received attention as a 

possible Tissue Engineering tool for producing complex tissue 
mimetics, precursors, and ultimately artificial organs [1]. However, 
to print bulk tissue mimetics or full-size organ precursors, it is 
necessary to create a vascular network to provide a convective 
nutrient and waste transport network for cells within the bulk [2]. 
Vascular structures also provide shear-flow cues for differentiation 
[3] and vascular remodeling [4]. 

To this end, two challenges exist in 3D hydrogel printing 
which are not typically encountered in 3D printing or rapid 
prototyping. Firstly, printed hydrogels typically exhibit some 
degree of surface flow, or even complete spreading, before 
gelation. Secondly, the diameters of vascular structures found in 
the body are on the order of several inkjet droplet diameters or 
even smaller [5, 6]. This means that minor deviations of droplet 
trajectory or surface flow during printing can drastically change 
the diameter of or even collapse vascular structures. 

In this work, we report on two printing strategies that improve 
the resolution of 3D inkjet printing of alginate hydrogels. The first 
is 4-Matrix printing – so called because the image to be printed is 
sub-divided into 4 inter-spaced images that are printed 
sequentially. As a result, printed droplets have time to gel on the 
substrate before droplets are printed adjacent to them. The second 
printing strategy is depositing droplets in incremental spacing 
(smaller than the main droplet spacing in the bitmap matrix) when 
printing or bridging overhanging structures. Pattern fidelity is 
improved drastically with these printing strategies and they permit 
the fabrication of overhanging structures and closed lumens that 
could serve as vessel mimetics for angiogenesis and tissue 
engineering. 

 

 
By controlling the timing, spacing, and distribution of printed 

droplets very precisely, we have succeeded in printing closed 
vessel mimetics transversally as opposed to axially; the current 
method reported in literature [7]. The method presented here also 
differs from those in which cross-linking agents are printed into 
liquid precursors to form shells [8]. As opposed to printing the 
vessels themselves, it is portions of the vessel walls and 
surrounding bulk which are printed – like bricks in a building. 

Materials and Methods 

Alginate Printing 
Alginate was selected as a model system for this work 

because it is well-characterized from its widespread use in the food 
industry, it is biocompatible, and it gels rapidly in the presence of 
bivalent cations. The alginate (A0682, Sigma-Aldrich Chemie 
GmbH, Buchs, Switzerland) was mixed to 0.8% wt. in de-ionized 
water for all printing experiments. The alginate was conjugated 
with fluorescein so that printed structures could be characterized 
by laser scanning confocal microscope. All confocal microscope 
images were made in standard phosphate buffered saline (PBS). 
Printed droplet spacing in the 2D and 3D images presented in this 
work was 40 µm unless otherwise indicated.  

Figure 1: LEFT: An alginate droplet is printed on a substrate. CENTER: The 
droplet spreads on the substrate as Ca2+ ions rush in. RIGHT: The droplet 
maintains a substantial portion of its height, allowing 3D structures to be 
printed. 

Hydrogel Substrates 
In order to gel the alginate at the desired sites on the surface, 

alginate was printed onto Ca2+ laden gelatin substrates (Figure 1). 
The substrates were prepared by mixing a 2% wt. gelatin solution 
(48724, Fluka, Sigma-Aldrich Chemie GmbH, Buchs, Switzerland) 
containing 10 mM CaCl2 0.9% wt. NaCl and heating to boiling, 
after which the gels were cooled for several hours in a refrigerator. 

The substrates served as a Ca2+ reservoir during printing to 
gel the alginate – first to gel the alginate arriving on the gelatin 
surface, and second to maintain the free Ca2+ concentration in the 
printed alginate layers to gel subsequent alginate layers. 
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Inkjet Setup 
The 50 µm inkjet head (MD-K-140) and inkjet driver 

electronics (MD-E-201-H) were supplied by Microdrop 
Technologies GmbH (Nordstedt, Germany). Three motorized 
MTS50 stages (Thorlabs GmbH, Munich, Germany) actuated the 
printing substrate in X, Y, and Z directions during printing. 
LabView (National Instruments, Austin, Texas) was used to 
provide printing trigger signals and motion commands based on 
input bitmap file stacks. 

 

Results 

Droplet Gelation & Coalescence 
It is known that droplet spacing and printing period have an 

effect on the morphology of lines of inkjet printed materials [9]. 
However, the alginate system used here is slightly different than 
those in which inks dry at a surface or a molten droplet solidify 
because alginate gelation is driven by a gradient of Ca2+ ions rather 
than a temperature gradient. 

To investigate the extent of the difference, 50 µm diameter 
alginate droplets were printed at 10, 25, and 40 µm spacings and 
printing periods of 100, 200, 300, 400, 500, and 600 ms (Figure 2). 
The lines were imaged using a fluorescent stereo-microscope and 
were analyzed for bulging, smooth line, and stacked coin features 
which are seen in the inkjet printing of polymer materials [10, 11]. 
Soltman and Subramanian offer a detailed description of these 
effects [10]. Bulging results from axial flow (coalescence) due to 
surface tension [9]. Smooth lines occur when droplets coalesce but 
insufficiently to experience any major axial flow [10]. Stacked-
coin structures occur when there is nearly no coalescence between 
droplets, such that individual droplet shapes are still visible [10].  

At 10 µm spacing and with a 600 ms period, bulging was still 
visible, although the bases of the incident droplets were 
sufficiently gelled that an underlying line structure was apparent. 

At 25 µm droplet spacing, no smooth lines were observed, and the 
transition from bulging to non-bulging lines seemed to appear just 
after the 500 ms printing period (2 Hz). For the droplets spaced at 
40 µm, bulging was no longer visible with a 300 ms printing 
period. 

Unlike the case of inkjet printed lines of polymers in organic 
solvents, smooth lines are not observed in the alginate system and 
stacked coin structures are actually observed within beaded lines. 
This suggests that the droplet-substrate interface is gelled upon 
contact, but that the rest of the droplet may still reflow if its 
viscosity is sufficiently low (limited gelation). 

In a standard row-by-row inkjet printing situation, this reflow 
would force the user to wait a set period of time between droplets 
to ensure gelation and avoid coalescence. 4-Matrix printing is 
discussed in the following section as a means to avoid droplet 
coalescence while eliminating this wait time. 

4-Matrix Printing 
In a basic ‘linear’ printing program, a droplet is dispensed at a 

point and then the system moves to an adjacent position to print the 
next droplet. In order to prevent coalescence (bulging) in this 
situation, it would be necessary to wait a fixed time between 
droplets. 

To address this issue, we developed a program to divide each 
bitmap matrix into four sub-matrices that are printed sequentially. 
The sub-matrices each contain the matrix points of alternating 
rows and columns such that no sub-matrix contains adjacent 
droplets (Figure 3). 

In order to assess the improvement in pattern fidelity using 4-
Matrix printing, the letters “EPFL” were printed using a standard 
linear printing process and 4-Matrix printing (Figure 3). Both 
images were printed using the same 40 µm droplet spacing, the 
same inkjet droplet generation parameters, and the same bitmap 
files. Droplet coalescence in the linear printed “EPFL” is very 
evident and results in a reduction of edge straightness, corner 
definition, a reduction of the size of bordered structures (the “P”) 

Figure 2: 1200 µm long alginate lines printed with 10, 25, and 40 µm droplet spacing. Printing periods of 100, 200, 300, 400, 500, and 600 ms were 
 tested. Beading is visible at low printing periods and small droplet spacing, but as expected reduces with an increased delay between droplets and 
 spacing between droplets. Scale bar = 150 µm. 
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and general horizontal ‘banding’ due to the coalescence of droplets 
printed by row. In the 4-Matrix printed “EPFL” pattern, the 
sidewalls, corners, and bordered structures are maintained. There is 
no banding, and individual droplets remain visible within the 
letters. 

Figure 3: TOP: Schematics of linear and 4-Matrix printing. In 4-Matrix printing, 
the original image is divided into 4 interspersed matrices: A, B, C, and D. First 
the A matrix is printed, followed by B, then C, and D such that droplets on the 
surface gel completely before new un-gelled droplets are printed adjacent to 
them. BOTTOM: The letters “EPFL” produced by linear and 4-Matrix printing. 
4-Matrix printing improves edge and corner quality. It also reduces ‘banding’ to 
the point that individual droplets are visible. 

Overhanging Structures 
In spite of the rapid gelation of alginate and the advantages of 

4-Matrix printing, a certain degree of surface flow does occur 
during printing. When printing basic 3D alginate shapes such as 
cubes, we found that surface flow results in only a minor loss of 
pattern fidelity as the sidewalls remain fairly vertical. However, 
when printing overhanging structures or closed structures using 
standard droplet grid spacing, we found that the overlap for a 
droplet spacing of 40 µm was not sufficient to ensure gelation 
because printed droplets tended to run down the sidewall. 
Generally speaking, this decreased the height of the over-hanging 
structure and often resulted in its collapse. 

In order to reduce the degree of down-wall flow, we 
developed a process improvement for printing by incremental steps 
(between the points of a standard printing array). Instead of merely 
printing droplets every 40 µm, we implemented the option of 
printing at 10 µm incremental steps. Consequently, there was more 
overlap between adjacent droplets near the edge of the 
overhanging wall, and less of the deposited droplets were 
deposited over the lip of the overhang. 

To demonstrate the effectiveness of this process 
improvement, a closed lumen was printed. The first seven layers of 
the structure each consisted of a 15 x 15 droplet square with a 5 x 5 
droplet void in the middle. Simply by adding incrementally spaced 
droplets in the subsequent layers, the lumen was successfully 
closed and retained its shape in a liquid environment (PBS) during 
confocal microscopy. 4-Matrix printing was used to maximize the 
pattern fidelity of each printed layer. The results are presented in 
Figure 4. 

Down-wall flow is clearly visible in the center void of the 
second confocal image slice in Figure 4. The top slice was taken 
roughly at the height of the 8th image of the bitmap stack. The 
lumen was completely closed; a result of the down-wall flow from 
bitmap images higher in the stack. 

 
 

Figure 4: Cross-section of stack of bitmap images used to print overhanging 
closed-box structure with fluorescent images of confocal slices taken from the 
corresponding printed structure. Black squares represent individual droplets. 
The typical height of a printed alginate layer in the stack is roughly 30 µm. The 
spacing between droplets in the grid is 40 µm with incrementally spaced 
droplet centers separated by 10 or 20 µm. At slice I) there is enough down-
wall surface flow from upper layers to close the box completely. At slice II), 
down-wall flow of distinct droplets is evident. At slice III) near the base, there 
is little observable down-wall flow and opening dimensions are as expected. 

Conclusion 
In this work, we have reported on two strategies that improve 

printing fidelity dramatically when inkjet printing complex 2D and 
3D alginate structures. 

First, 4-Matrix printing was shown to dramatically improve 
pattern fidelity by all but eliminating coalescence of partially 
gelled droplets on a substrate without an added wait time. Next a 
closed lumen was printed transversally by overlapping droplets at 
finer spacing than the standard printing grid. This reduced down-
wall flow so that the lumen would not collapse during printing of 
the overhanging sidewalls. Despite a relatively limited number of 
applications of alginate in tissue engineering, the printing 
strategies presented here could potentially be applied to other 
rapidly gelling hydrogel systems such as pH cross-linked gels or 
alginate functionalized PEG [12]. 

The ability to print closed lumens transversally is a key first 
step towards producing vascularized bulk tissue mimetics and full-
size organ precursors by inkjet printing. Ongoing work will focus 
on the methods required to create complex interconnected vascular 
structures. 
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