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Abstract 
Thermal transfer printing is noted for its ability to produce a 

uniform line, and it is used extensively for high reliability bar 
coding around the world.  Thermal transfer is capable of printing 
on a wide variety of flexible substrates including paper, film, 
fabric, etc. These characteristics make thermal transfer ideal for 
printed electronics.   

IIMAK has developed conductive ribbons based on metal 
nano-particles (silver, silver / copper composites) and on vapor 
deposited metals (aluminum, copper) that provide the potential to 
print flexible circuits, membrane key boards, RFID antennas, etc. 
on a number of substrates (paper, vinyl, polypropylene, 
polycarbonate, polyimide, etc.).  Dielectric ribbons based on 
insulating polymers are also available and can be used to provide 
insulating layers between conductive layers.  Characteristics of the 
ribbons, prints and some model applications will be discussed 
along with the benefits and limitations of thermal transfer. 

Potential to adapt these ribbons to the closely related 
technology of laser thermal transfer will also be discussed.   

Introduction 
Printed electronics has the potential to revolutionize the 

creation of devices in a myriad of ways.   The promise lies in the 
ability to use well-established production processes to reduce costs 
and to expand the range of applications where electronics can be 
applied.  The cost reduction comes from a process of device 
manufacturing that can be additive in nature rather than the 
traditional subtractive processes currently used to produce 
electronics (with all of the process steps and chemical wastes that 
that implies).  New applications can include wearable printable 
displays, biocompatible electronics for food and drug traceability, 
lightweight military gear, reprogrammable books, magazines, 
newspapers, fuel cells, OLEDS, and photovoltaics.  The range of 
potential printed electronics applications is limited only by the 
imagination.  The technical challenges, though, are many, 
including good control of feature size (both width and thickness), 
the production of small and reproducible features, registration of 
layers and features, and integration with other traditional 
electronics processing techniques. 

There are two broad categories of printing technologies in use 
today; analog and digital.  Analog techniques include offset 
lithography, flexography, screen, and gravure.  Digital 
technologies include laser, ink jet, and thermal transfer.  Many of 
these printing technologies are under investigation for printed 
electronics, including gravure, flexography, screen printing, and 
ink jet printing.  Gravure printing is limited to about 50 micron 
lines and has been used to produce low resolution displays.  Screen 
printing is also about 50 micron resolution and has been used to 

produce some printed circuit boards and membrane keyboards.  
Flexography has been shown to be capable of features about 30 
microns in size, but dot distortion and degradation issues have 
limited its use.   Analog printing technologies generally require a 
master to be produced for each design, and hence they are most 
suitable to a large number of units where the cost of the master can 
be shared amongst the units.   

 
 
 
 
 
 
 
 
 

Ink jet is digital technology where each unit can be unique 
without incurring further cost penalty.  Ink jet is currently the most 
investigated technology for printed electronics.  It is capable of 
producing very small features (as small as 10 microns have been 
demonstrated), but has several challenges in jetting metal particles. 
First, it is difficult to maintain dense metal particles in stable 
suspension. Second, these metal particles and tend to clog in the 
nozzle during the jetting process. One potential alternative is to 
incorporate conductive polymers. This approach is severely limited 
by the low concentration at which the polymers are soluble.  A 
third issue with ink jet is that the uniformity of the printed line is 
poor because of the disposition’s dot nature and the surface tension 
/collision kinetics. The result is dried dots that can look like craters 
(the well known “coffee stain effect”) and have poor edge 
definition (see Figure 1). Lastly, ink jet has substantial substrate 
limitations.  Ink drying, spreading, etc. must all be considered and 
designed for on a given substrate. 

Thermal Transfer Printing 
One digital printing technology that has not received much 

attention in the printed electronics arena is thermal transfer 
printing.  Like ink jet, thermal transfer printing is a digital 
technology and each print can be unique allowing for the 
production of prototypes with rapid design cycles for printed 
electronics as well as the production of a small number of units.  
Large numbers of units can also be produced, but other print 

Figure 1 - Ink jet line uniformity is hard to obtain. 
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technologies can be more cost effective at sufficiently large 
volume.   

Thermal transfer technology has been employed in the world 
of automatic identification for many years now.  Some of the 
strengths thermal transfer brings to barcode imaging also apply to 
printing for electronic applications.  These include: 
• The ability to print very sharp, well defined lines (necessary 

for production of bar codes with extremely high readability 
rates) 

• Controlled and uniform thickness of the lines (achieved 
during the thermal transfer ribbon coating process) 

• Minimization of chemical waste (the coating is created and 
applied by the ribbon manufacturer and is printed by the end 
user in the solid state) 

• Robust processing on a proven printing platform (widely used 
for printing on loading docks, factory floors, etc.) 

• Thermal transfer is an additive process that minimizes the 
process steps associated with subtractive methods, such as 
plating, masking, exposing, metal removal, mask removal, 
etc. 
 

Aided by recent technology developments in conductive 
materials, particularly nanoparticles, thermal transfer printing can 
be used with the appropriate ribbon design to produce many types 
of printed electronics. 

As with any printing technology, thermal transfer also has its 
limitations.  Resolution of the print in thermal transfer is controlled 
by the thermal printhead.  Currently 200 and 300 dpi printers are 
common; 400 and 600 dpi printers are also readily available.  
Printhead manufacturers like Kyocera are working on higher 
resolutions 1200 and 2400 dpi, but these have not yet been 
incorporated into a commercial printer.  Thermal transfer printers 
are typically designed to print on a flexible substrate.  Paper, 
polyester, polyimide, fabric, etc. can all be used.  Printers for rigid 
surfaces, though, are not readily available.  Oyo Instruments LP, is 
developing printers for rigid, flat substrates (like silk screens), and 
decal technology where thermal transfer is used to produce the 
decal that is then transferred to the rigid substrate (like 
Decotherm® for glass) could be used for other rigid substrates for 
both flat and three dimensional objects (pad printing of decals onto 
bottles, for example).   

Ribbon Construction 
A typical thermal transfer ribbon is constructed on polyester 

film that is generally from 3 to 9 microns thick.  On one side of the 
film, a heat resistant slip layer is coated that allows for smooth 
movement of the film under the thermal printhead.  On the 
opposite side of the film, the functional material is coated.  This 
side of the ribbon may be as simple as a one layer construction 
(common in a wax thermal transfer ribbon used for bar coded 
labels with short life spans) to a complex, multi-layer construction 
(common in resin ribbons which require chemical resistance, UV 
resistance, and longer life spans).  Layer structures can include an 
adhesion modification or promotion layer, a release layer, and one 
or more functional layers.  All of these layers are designed to 
ensure the ribbon has good adhesion to the film before printing, 
good adhesion to the receiver after printing, good printing 

characteristics, and the desired resistance to chemicals or 
mechanical abrasion after printing. 

 
 
 
 
 
 
 
 
 
 

The Printing Process 
The thermal transfer printer works by conveying the ribbon 

and flexible receiver in pressure contact with one another under a 
thermal printhead (Figure 3).  The functional side of the ribbon is 
in contact with the receiver and the heat resistant slip layer of the 
ribbon is in contact with the thermal printhead.  The printhead 
consists of a line of heatable elements typically 200 to 600 per 
inch, and the printhead width is typically 2 to 8 inches, but 
commercial printers are available as wide as 40 inches.  As the 
media and ribbon are passed beneath the line of elements, selected 
elements are heated image-wise to effect the transfer of the 
appropriate layers from the ribbon.  The layers can transfer by 
melting (as for a wax) or by softening to a point where the 
adhesion to the receiver exceeds the adhesion to the ribbon carrier  

film (as for a resin ribbon).  The elements heat to about 400ºF, 
but the speed of the ribbon receiver package is generally from 2 to 
16 inches per second so the residence time under the line of 
elements is very short.   

 
There is a variation on the commonly used thermal transfer 

printer often referred to as laser thermal transfer.  In this case, the 
thermal printhead is replaced as the heat source by a laser beam.  
Ribbons for laser thermal transfer are typically coated on thicker 
films for ease of handling, and there is no need for a heat resistant 
slip layer as the thermal printhead has been eliminated.  One layer 
in the ribbon construction (which also may be the functional layer) 
must be capable of absorbing the laser light and converting it to the 
heat necessary to effect the thermal transfer.  The cost of such a 
printing system is much greater than a typical thermal transfer 

Figure 2 - Conductive thermal transfer ribbons

Figure 3 - Ink is transferred from the ribbon to the substrate 
using heat 
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printer, but the resolutions that can be achieved are greatly 
improved by controlling the width of the laser beam. 

Thermal Transfer Ribbons for Printed 
Electronics 

Thermal transfer ribbons for either type of thermal transfer 
printing can be formulated to be very resistive or very conductive 
(resistivities can range from 1014 to 10-2 ohms/square) and can be 
engineered to print on a wide variety of substrates, such as paper, 
fabric, PET, polyimide, polypropylene, and other synthetic films.  
A highly resistive ribbon is generally composed of a polymer that 
also has quite high resistance like polyacrylate, polyester, or 
polyethylene.  Fillers, process aids and other additives may be 
incorporated to provide appropriate coating and thermal transfer 
properties.  Transferable layer thicknesses from 0.01 to 25 microns 
are readily achieved with 1 to 10 microns thickness typical. 

 
Conductive carbon blacks can be easily incorporated into 

thermal transfer ribbons.  The carbon loading is limited by the 
viscosity of the solution to be coated.  Resistivities in the range of 
108 to 101 ohms/square can be obtained with conductive carbon 
blacks.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Metal particles are also easily incorporated into thermal 

transfer ribbons.  For years, iron oxide particles have been used to 
provide MICR (Magnetic Ink Character Recognition) ribbons for 
encoding information onto checks that are sorted by machine.  
Silver, silver-copper composites, copper, and gold are available as 
flakes and nano-particles that can be incorporated into thermal 
transfer ribbons.   

Nano-particles, like those available from NanoDynamics, 
Inc., are an excellent choice for incorporation into thermal transfer 
ribbons. They are easily dispersed in coating solutions, and the 
solution stability needs to be maintained only until the solution is 
coated onto the thermal ribbon carrier.  The particles are then shelf 
stable for months or years in the thermal transfer ribbon.  The 
small size of the nano-particle lowers the sintering temperature for 
the metal.  A post printing curing or sintering process helps meld 
the particles into continuous conductive paths.    

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ease of sintering nano-particles can be further exploited 
in thermal transfer printing in that the heat associated with the 
printing process is generally enough to accomplish the sintering 
and no post processing is required.   

Because the coating solution is manufactured and applied to 
the film by the ribbon manufacturer, the printer of the electronic 
device using such particles does not need to worry about solution 
stability (the dense metal particles tend to gravitationally separate 
over time in solution) as they would with an ink jet ink.  
Additionally, high metal loadings are possible as there are no 
cloggable nozzles that have to be negotiated in either the ribbon 
coating process or by the device manufacturer.  The high metal 
loading combined with the thermal energy imparted in the thermal 
transfer printing process generally make any post printing sintering 
process unnecessary.   

Similar to nanoparticles, metal flakes are easily incorporated 
in a thermal transfer ribbon formulation.  The flake morphology 
has some advantages in that inter-particle contacts are more 
frequent so a conductive path is more easily established than with 
spherical particle morphology.  These also would not require any 
post processing after thermal transfer printing to provide 
conductivity. Silver, copper, and composite flakes from 1 to 20 
microns are commercially available and can be formulated into 
thermal transfer ribbons with good conductivity.  Conductive layer 
thickness can range from 0.5 to 15 microns. 

Conductive ribbons can also be produced by the vapor 
deposition of an appropriate metal onto a properly prepared film.  
Usually, a release layer is necessary between the polyester carrier 
of the thermal transfer ribbon and the metal layer.  An adhesion 
promotion layer may also be coated on top of the deposited metal 
to aid in the thermal transfer process and to promote adhesion to 
the desired substrate.  Deposition of aluminum, copper, or nickel, 
as is common in capacitor construction, is readily usable in a 
thermal transfer ribbon.   

Thicknesses of the metal deposition layer can range from 
about 50 Angstroms to 5000 Angstroms.  As with capacitors, the 
resistivity of the metal layer decreases with increasing thickness, 
typically from about 10 ohms/square to 0.01 ohms/square 
depending on the metal composition as well as the thickness.  
Thickness can also be built up for greater current carrying capacity 

Figure 4 - Silver-copper coated flakes shown magnified 
here.  (Photo courtesy of NanoDynamics, Inc.) 

Figure 5 - Inside view of a common thermal transfer printer
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with these ribbons by overprinting with a thermal transfer printer 
configured for such use. 

 
Metal containing thermal transfer ribbons, whether based on 

nanoparticles, metal flakes, or vapor deposited metal layers, can be 
used to print RFID antennas, membrane keyboards, other printed 
circuits, or seed layers onto which further plating can be done to 
build up the metal thickness.  This capability could also be useful 
in the design of RFID antennas and printed circuit boards; since 
each print can be unique, the prototyping of circuit boards and 
other electronic devices could be very rapid with this approach.   

Summary and Conclusion 
Thermal transfer printing has the possibility of contributing 

greatly to the field of printed electronics.  It brings an inherent 
ability to provide uniform line widths and thicknesses and with the 
development of higher resolution printheads or laser thermal 
transfer, feature size could be quite small.  Resistive ribbons can be 
created using insulating polymers and conductive ribbons using 
either metal particles or vapor deposited metal layers have been 
demonstrated.  RFID antennas, membrane keyboards, printed 
circuit boards, and other printed electronics and are all possible 
using thermal transfer printing technology.  

About IIMAK 
IIMAK is a multinational company that develops, 

manufacturers, and markets all types of printing, imaging, and 
marking consumables including inks, thermal transfer ribbons, 
specialty papers, cartridges, and cassettes.  In 2008, IIMAK 
launched a full line of Metallographic Conductive Inks for screen, 
gravure, flexo, and digital printers. For more information about 
IIMAK and its products, visit www.iimak.com or call 
888.464.4625. 
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