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Abstract 
The highly uniform shear forces at millimeter and smaller 

dimensions can produce monodisperse particles spontaneously 
during continuous flow of immiscible fluids. Microfluidic 
techniques have also recently been used to generate and organize 
arrays of solid monodisperse microparticles with various material 
properties. Combining these developments with a well-engineered 
“chip-to-world” interface will provide a new high-resolution 3-D 
printing technology for rapid prototyping and biotechnology. 

We produced hydrogel droplets at rates of 10-200 Hz in 
PDMS microreactors. Droplets were monodisperse, with 50-200 
micron diameter dependent on flow rate, channel shape and the 
presence of surfactants. Droplets may be dispensed from the chip 
in their liquid state, or solidified by one of three mechanisms. 
Ultraviolet (UV) light was used to solidify photosensitized 
hydrogels. We also discuss other hydrogel systems that are 
solidified by a chemical reaction (sodium alginate and CaCl2) or 
by thermal gelation (Pluronic F-127), methods to vary the 
droplets’ chemical composition and mechanical properties, and 
methods for closed-loop electrical feedback on particle position 
for precision fabrication. Biocompatible hydrogels are of great 
interest for biomaterial applications such as drug delivery and 
tissue engineering. 

Introduction 
Three-dimensional printing methods that deposit a stream of 

viscous material are capable of rapid prototyping at a relatively 
low cost. For example, fused deposition modeling (FDM) and 
robocasting both operate by extruding material from a nozzle, with 
either the nozzle or the part moving under computer control. 
Because the deposited layers are relatively thick, parts can be built 
faster than by inkjet printing methods. However, because it takes 
some time for pressure or heat to start and stop flow at the nozzle, 
there is a serious tradeoff between build speed and a well-
controlled cutoff of the deposited material.  

This paper will review the work of our group and others with 
surface-tension based microfluidic techniques that use steady flow 
to produce a train of monodisperse droplets, rather than a 
continuous stream of material. These droplets are a potential 
source of individual voxels for three-dimensional printing. To 
apply the droplet generators as a printing technology, however, 
two important engineering developments are needed: (1) creation 
of droplets from materials that can quickly be solidified using 
various methods, and (2) precise control over droplet location as 
solid or liquid droplets exit the microfluidic device. Toward goal 
(1), materials development, we discuss three droplet solidification 
mechanisms: photopolymerization, chemical solidification, and 
thermal gelation, and provide examples of materials in each 
category. Toward goal (2), control over ultimate droplet location 
on the finished part, we discuss an electrode-based particle 
detection method that can sense the presence of droplets in a 

microfluidic channel. This information will help coordinate the 
translation stage with droplets’ arrival at the chip outlet. With 
these developments, we envision microreactor print heads that 
generate, organize, and deposit arrays of solid microparticles with 
various material properties, having highly controllable shapes. 
This technology will enable rapid freeform fabrication of complex, 
high-quality parts directly from computer files by depositing small 
volumes of solid materials from chemicals that are mixed to the 
user’s specification. Applications of the materials discussed here 
are especially promising in the medical and biotechnology fields.  

Droplet formation 
In the microfluidic regime (typical channel widths 1mm and 

smaller), when two immiscible fluids meet at a junction, the 
balance between surface tension and pressure can spontaneously 
produce monodisperse droplets (~2-5% coefficient of variation in 
diameter) [1,2]. Similar droplet trains form by flow focusing at 
bottlenecks during injection of oil and water streams at constant 
flow rates [3]. From around the year 2000 onwards, the problem of 
formation and manipulation of discrete droplets in two-phase flow 
inside microdevices has drawn significant attention [4]. While 
these spontaneously-formed droplet trains already have regular 
spacing that will be useful for predicting droplet arrival time in a 
printing application, droplet formation can also be electrically 
triggered at precise times by charging the water/oil or polymer 
interface in a microfluidic device [5]. Electrodes can switch fluids 
or droplets from one channel or another with no moving parts 
[6,7]. These techniques will enable electrically-controlled droplet 
release, addition of dyes, crosslinking agents, thermally 
depolymerizable substances or conductive liquids to selected 
droplets, and switching droplets into a stream in order to build an 
arbitrary sequence of colored/ differentially soluble/ conductive 
materials for deposition. 

Figure 1 Top left: schematic of a flow-focusing droplet reactor; top right: 100-
micron diameter water droplets forming under steady inputs of water and oil 
in our reactor. Bottom: schematic of T-junction droplet reactor and mixer [8]. 
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Examples of microfluidic droplet-producing devices are 
shown in Fig. 1. Two immiscible fluids containing the 
hydrophobic and hydrophilic phases are injected into the 
microfluidic device using syringe pumps. Because a hydrophobic 
material was used for the channel walls in our experiments, the 
system produces aqueous or other polar droplets surrounded by a 
hydrophobic continuous phase (typically hexadecane or silicone 
oil). These microreactors create 50-200 micron diameter hydrogel 
droplets at a rate of 200-300 droplets per second.  

Microreactor fabrication method 
Droplet microreactors shown in Fig. 1 were produced by 

casting material onto a microfabricated mold master. The mold 
masters were made from SU-8 50 (MicroChem) negative 
photoresist on silicon. The devices were cast in 
poly(dimethyl)siloxane (PDMS) elastomer (Sylgard 184, Dow 
Corning Corporation). PDMS is widely used in the set of 
microfabrication techniques known as soft lithography [9]. It is a 
popular material for several reasons: it offers easy replication of 
microscopic features from reusable molds, transparency, low cost, 
biocompatibility, ability to bond to a smooth surface, and good 
control over wettability. A PDMS mold is prepared by mixing of 
PDMS prepolymer and curing agent in a 10:1 ratio and then 
degassing in vacuum to remove bubbles. The degassed PDMS 
mixture is then distributed onto the silicon master and cured at 
60°C in an oven. After curing and demolding, holes are punched in 
the PDMS replica to add the fluid inlet lines. The replica and a 
PDMS coated glass substrate are both treated with oxygen plasma 
for 20 seconds and brought into contact to irreversibly bond to 
each other, forming a microchannel with all four walls made from 
hydrophobic PDMS. These fabrication steps are illustrated in 

Fig. 2. The cross-sectional dimensions of the final assembled 
microfluidic channels are 150 μm ×150 μm. Some devices have a 
large outlet reservoir (Fig. 3a) for collection and observation of the 
particles, and others have multiple inlets and a mixing section (Fig. 
3b) for inducing solidification by a chemical reaction between two 
components in a droplet, followed by a long channel to allow the 
reaction to proceed. 

Droplet materials and methods  
Liquid droplets can be solidified by at least three different 

mechanisms: thermal solidification (by a phase change or 
polymerization), chemical reaction, and photopolymerization. 

Thermal solidification Aqueous solutions of polymers 
such as Pluronic F-127 will undergo an inverse sol-gel transition, 
becoming solid when heated. Depositing these liquids from a 
cooled microfluidic device onto a room-temperature or 
physiological temperature substrate will solidify them into a 
biocompatible hydrogel with applications in tissue printing and 
bioengineering [10]. Typical concentrations are from 15 to 30 wt% 
in water. Without a dedicated cooled stage, however, we found 
25% solutions of F-127 too viscous to readily undergo droplet 
formation, instead forming a parallel co-flowing stream with the 
continuous phase (hexadecane). Another possibility is to use more 
conventional phase-change mechanisms (freezing) to produce 
solids upon cooling of liquid precursors. 

Chemical reaction Because sodium alginate and calcium 
chloride solutions gel rapidly when mixed, and are biocompatible, 
this system has been studied for biotechnological applications 
including cell encapsulation [12]. In this technique, aqueous 
sodium alginate and calcium chloride solutions are employed as a 
monomer and cross-linker, respectively. These solutions are 
slowly injected into two reagent inlets, supplying the dispersed 
phase, and an immiscible fluid (n-hexadecane) is injected into the 
other inlet in a perpendicular direction, supplying the continuous 
phase. Once the alginate solution comes into contact with the 
calcium ions, it immediately transforms into a gel due to the 
crosslinking between the guluronic acid blocks in the alginate by 
the Ca2+ ions. The interaction of these two precursors forms a 
fused droplet. The aqueous phases we used were a 1% by weight 
solution of sodium alginate in deionized water, and 20mM calcium 

Figure 2 Fabrication process steps for microfluidic device from 
poly(dimethyl siloxane) (PDMS). Devices are sealed to a glass 
slide with a thin layer of PDMS for an all-PDMS hydrophobic 

(a) (b) 

Figure 3 Layouts of T-junction device ports: (a) Two inlets and one large 
outlet port for collection, (b) Three reagent injection device with mixing 
section and observation channel. 
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chloride (CaCl2) in water. The hydrophobic phase (continuous 
phase) was hexadecane containing surfactant (Span 80, 1 % by 
weight). Flow rate for both aqueous streams were set up at 
0.01ml/h, while the continuous phase was maintained at 0.9 ml/h. 

Photopolymerization Advantages of 
photopolymerization as a droplet solidification method are spatial 
and temporal control over polymerization, and extremely fast 
curing rates at room or physiological temperature. 
Photopolymerizable droplets can be made from acrylate-
photoinitiator resins familiar to users of ultraviolet (UV) 
stereolithography and other three-dimensional photoprinting 
techniques. The UV light activates photo-initiators in the droplet 
which cause monomers to link to each other and this solidifies the 
material. Solid particles have been formed with these mixtures in 
droplet microreactors, but because these resins tend to be 
hydrophobic, the immiscible continuous phase is usually polar 
(water or another polar solvent). Therefore, the droplet reactors 
cannot be made from hydrophobic PDMS, but can be glass [13], 
plasma-activated temporarily hydrophilic PDMS [14], or urethane 
[11]. In contrast to these acrylates, photopolymerizable hydrogel 
droplets are polar and immiscible with oils, so the hydrophobic 
PDMS reactors described in Fig. 2 can successfully be used. If 
photoinitiators are chosen with low toxicity, these hydrogels will 
be useful for encapsulation of cells and other biological materials. 
We used a mixture that polymerized rapidly upon UV exposure to 
the mercury lamp in our fluorescence microscope, from [15]: 5 ml 
of 4-hydroxybutyl acrylate, 0.65 ml of acrylic acid, 58 µl of 
EGDMA (ethylene glycol dimethacrylate), and 30 mg DMPA 
(dimethylpropionic acid) photoinitiator, with similar flow rates to 
those used in the alginate system. 

Results 
We used surface-tension based microfluidic methods to 

produce droplet trains from two types of solidifiable materials. 
Photopolymerized hydrogel spheres with an average diameter of 
60 microns were produced within a 100 micron diameter channel 
as shown in Figure 4a, and alginate hydrogel beads were produced 
by reaction with calcium chloride, in diameters ranging from 100-
130 micron diameter within a 200 micron channel, as shown in 
Figure 4b. Photopolymerizable droplets had the advantage of rapid 
polymerization (~0.1 s or faster) so droplets were solidified before 
they could touch and merge in the outlet channel, producing 
monodisperse droplets even if surfactants were not present. 
However, alginate droplets’ diameters were sensitive not only to 
flow rate and channel shape but also the presence or absence of 
surfactants, resulting in some larger merged droplets before 
solidification could occur, as seen in the middle of Figure 4b. 
Nevertheless, alginate beads are attractive due to their nontoxicity, 
biodegradability, and because they are formed from naturally 
occurring polysaccharides. These microfluidic devices are 
expected to find use in various fields, including high-resolution 3-
D printing technology for rapid prototyping and biotechnology, 
and cell encapsulation [12]. 

 

Conclusions and future work 
Photopolymerization of hydrogels allows good control over 

the spatial and temporal solidification process, as compared to 
solidification based on chemical reactions. A microfluidic three-

dimensional print head can be envisioned for biomaterials using 
these chemicals with the same microfluidic chips but with 
miniaturized pumps, a microcontroller-based electrical interface, 
and a LED (395 nm) light source.  

To deposit the particles in registry with parts under 
construction in a three-dimensional printing system, it will be 
important to sense the location and timing of particles as they 
emerge from the microreactor. The resulting information could be 
used to synchronize motion of the deposition system, or to shift 
particles into or out of the deposition stream. Here, 
microelectrode-based techniques should find several applications. 
Electrodes can apply fields for injecting, pumping and mixing 
fluids via electrophoresis, and for steering polarizable particles via 
dielectrophoresis. When a particle passes between a pair of 
electrodes in a medium having different electrical conductivity, the 
resulting impedance change signals the presence of the particle for 
closed-loop feedback during processing [16]. 

We described methods for particle formation in microfluidic 
reactors in relation to three-dimensional printing of biomaterials. 
Besides potential improvements in the quality and speed of three-
dimensional printing, the technology promises to reduce the 
environmental impact of rapid prototyping by minimizing user 
exposure to hazardous reagents and providing opportunities to 
reuse materials. The process takes place in a closed channel, and 
hazardous reagents such as monomers are rendered harmless by 
polymerization before they exit the chip, while the immiscible 
nature of the droplet and continuous phase solutions allows 
continuous separation and reuse of unpolymerized material and 
carrier fluid. On-line detection of particle conductivity can prevent 
waste on a larger scale by sensing any defective particles and 
removing them before they are incorporated into the part. 
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