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Abstract 
This paper describes methods for the three-dimensional 

fabrication of smart actuators and responsive devices 
incorporating functional parts in elastomeric materials. The paper 
focuses on the fabrication of a bi-stable device which exhibits a 
dramatic change in shape when subjected to an external pressure 
load. 

Two different fabrication methods are described. In the first 
method, parts are fabricated by casting the elastomer material in 
moulds produced by 3D printing. In the second method, parts are 
fabricated directly by 3D printing in a printable elastomer 
material. Experimental results are presented for devices fabricated 
by both methods, comparing their response under a pressure load. 
The effect of changing part geometry (wall thickness) is also 
investigated.  

In addition, a working device with two-way actuation is 
demonstrated, in which a pair of shape memory alloy actuators 
are employed to bring about changes in the device’s shape.  

Possible applications for such devices include visual and 
tactile indicators and displays for interactive products. Other 
areas where they may be employed include robotics and 
interactive art and design applications. 

Introduction 
Three-dimensional shape and surface texture may be 

employed to communicate information to the users of products and 
systems. For example, some Victorian bottles had conspicuous 
surface textures on their outside surfaces, which served as a 
warning that their contents could be harmful if consumed. Norman 
recommends that levers and switches should be designed to “look 
and feel different”, to help prevent user error through 
misidentification, particularly when safety is a priority - for 
example, controls for aircraft or nuclear power stations [1]. 
Research led by Chamberlain at Sheffield Hallam University 
involved the development and testing of a visual and tactile 
identification system for medical connectors which are used in 
drug delivery systems, to help prevent misconnection errors which 
can be potentially fatal [2, 3].  

A number of design studies have explored how changes in 
shape and texture may be exploited as a means of communication. 
For example: Tsui’s study of ‘Dynamic Textures’, which includes 
a temperature-responsive cup with spines which rise from its outer 
surface, to warn that the cup may be too hot to hold [4]; Horev’s 
investigation of shape change within interaction design [5]; a 
digital jewellery piece by Wallace entitled ‘Blossom’, which 
displays an expressive movement, opening like a flower when it 
receives a signal from a remote location [6]. Other relevant 
examples include a wearable tactile display by Koo et al. [7] 
braille displays by Johnson and Orlosky [8] and Rossiter et al. [9]; 
a tactile feedback device by the TiNi Alloy Co. [10] haptic 

displays reported by Ashley [11]; and visual and tactile indicator 
devices described in [12, 13]. 

Research in other related areas includes the “Softbot” 
developed by Trimmer, Kaplin and colleagues at Tufts University, 
which is a caterpillar-like robot made from silicone rubber, with 
movement provided by shape memory alloy spring actuators [14, 
15]; a bistable jumping structure by Santer and Pellegrino [16] 
employing shape memory alloy spring actuators, and which 
demonstrates principles which may be employed in structural 
elements for “binary robotics systems” [21];  a dual diaphragm 
electroactive polymer actuator by Rossiter et al. which was 
fabricated by photopolymer 3D printing and is capable of 
providing two-way actuation for soft robotic applications [17]. 

Research described in this paper investigates methods for the 
fabrication of a pressure-responsive bi-stable device. This device 
changes shape in response to an externally-applied pneumatic 
pressure load. Devices are fabricated by two different methods, 
using different materials. Their response to a pneumatic pressure 
load is observed and compared. Lastly, a device employing shape 
memory alloy actuators is demonstrated. Here two-way actuation 
is achieved using a pair of shape memory alloy spring actuators 
acting in opposite directions to one another.  

Anemone Indicator 
The anemone visual and tactile indicator, which is shown in 

figs. 1 to 3, comprises an array of spikes radiating from the outer 
surface of a hemispherical diaphragm. The device is made from a 
soft elastomer material, and the structure can be inverted, as shown 
in fig 1a so that the spikes are retracted, nesting within the inverted 
hemisphere.  The anemone indicator is a bistable structure, since it 
is stable in both retracted and deployed states. When retracted, 
applying a force or pressure load onto the underside of the 
anemone indicator causes it to “pop-out” i.e to revert to its 
deployed state fig 1b.  The device is called the anemone indicator 
because in form and action it is in some ways reminiscent of the 
sea anemone, which turns parts of its body inside out to feed.  

The anemone indicator was first presented in [12] where 
prototypes were fabricated by vacuum casting silicone and 
polyurethane elastomer materials, using moulds made by 
stereolithography.  In [13] a bistable “pop-out” spike of a different 
design was presented, which was fabricated by vacuum casting 
silicone rubber in 3D printed moulds (in Objet Geometries Ltd 
Fullcure® 720 resin), and also by 3D printing directly in a 
photopolymer elastomer material (Objet Geometries Ltd Fullcure® 
930 resin). However, in [13] tests were not carried out to compare 
the functional performance of devices made by the two fabrication 
methods - working actuated devices were only presented using the 
vacuum cast silicone rubber versions of the pop-out spikes. 
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In the present investigation, anemone indicators were 
fabricated by vacuum casting silicone rubber in moulds produced 
by 3D printing using the Objet Eden 350 V photopolymer 3D 
printer and Fullcure® 720 resin (Objet Geometries Ltd, Rehevot, 
Israel). The silicone rubber was RTV 139 with 5% C148 catalyst 
(Alchemie Ltd, Kineton, Warwick, UK) which had a hardness of 
30 +/- 3 Shore A [18]. Anemone indicators were also fabricated by 
3D printing directly in the Objet Fullcure® 930 photopolymer 
resin, with “rubber-like” properties, having a hardness of 27 Shore 
A [20].  

 
 

 
 
 
 
 

 

 

 

 

 

 
Figure 1.  Anemone indicator shown (a) retracted and (b) deployed 

 

 
 
 
 
 
 
 

Figure 2. Anemone indicators in silicone rubber, within an aluminium frame  

 

 
 
 
 
 
 
 

Figure 3. Anemone indicator in 3D printed photopolymer 

Comparison of “pop-out” pressures for 
pneumatic actuation  

Using the apparatus shown in fig. 4, anemone indicators 
fabricated by both methods were tested to compare their response 
to a pneumatic pressure load. In the tests, an anemone indicator 
was connected via tubes to a medical syringe driver pump, and in 
parallel to a digital manometer with record facility. At the 
beginning of the test the indicator was in its retracted state. At the 
start, the volume of air in the system was approx. 61 ml. The 
pneumatic pressure acting on the underside of the indicator was 
gradually increased by advancing the syringe driver pump (flow 
rate 100 ml/hr) until the indicator “popped out”. Once the indicator 
was fully deployed, the syringe driver pump was turned off. The 
maximum pressure recorded by the manometer prior to the 
indicator popping out was logged (i.e. approximately the “pop-out 
pressure”). The effect of changing the geometry of the component 
i.e. the wall thickness of the indicator’s hemispherical shell was 
also investigated, and the combined results of these tests are shown 
in fig 5.  Three samples of each type were tested. The lines on the 
graph represent the average (mean) value for indicators made from 
silicone rubber and “rubber-like” photopolymer material.            

      As can be seen from the graph, the anemone indicators 
made by 3D printing in the Objet Geometries “rubber-like” 
photopolymer material were found to pop out at a lower pressure 
than those made from silicone rubber. This reflects the fact that the 
Objet Fullcure 930 photopolymer resin has a slightly lower Shore 
A hardness value than the silicone rubber used in this 
investigation. Also evident from the graph is that increasing the 
component wall thickness has the effect of raising the pressure at 
which the indicators pop-out. 

A significant difference in the dynamic response of the 
silicone and photopolymer indicators was observed. It was found 
that once the critical pressure was reached, the silicone indicators 
popped out quickly, whereas the photopolymer indicators appeared 
to “creep” out much more slowly. This difference in dynamic 
response was recorded using a pressure transducer attached to a 
data logger (sample rate: 10 readings per second). The increase in 
pressure on the underside of the indicator was again provided by 
the syringe driver pump.  As can be seen for the graph in fig. 6, 
once the maximum pressure is reached, the time taken for the 3D 
printed photopolymer indicator to “snap through” (i.e. the time 
taken for the pressure to drop from maximum to minimum) is 
approx 13.2 seconds, whereas the silicone version of the indicator 
takes approx 1.1 seconds to snap through. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Pressure testing apparatus 

796 Society for Imaging Science and Technology



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Pressure testing results: Approximate “pop-out” pressure (gauge 
pressure) for silicone and photopolymer anemone indicators  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pressure testing results: typical “snap-through” times for silicone 
and photopolymer anemone indicators, shell thickness 1.0 mm 

Two-way actuation of the anemone Indicator 
Two-way actuation of the anemone indicator device was 

accomplished using a pair of NiTinol shape memory alloy (SMA) 
spring actuators, which contract in length when heated.   

NiTinol is a “smart” shape memory material which, when 
configured appropriately, may be employed to provide two-way 
actuation. Gilbertson describes actuation using SMA “muscle 
wires”, with various mechanisms for providing a bias force to help 
return the SMA wire to its original length once cooled, including 
spring, gravity, magnetic and reverse bias configurations, and also 
the “opposing wire bias” configuration, in which two SMA wires 
act in opposing directions [19]. Tactile and Braille display devices 
employing NiTinol actuation have been developed by the TiNi 
Alloy Co [8, 10]. At the Deployable Structures Laboratory, 
University of Cambridge, Santer and Pellegrino employed NiTinol 

springs actuate a bistable jumping structure. The nitinol 
springs provided the actuation force and stroke required for the 
structure to "snap through" from one stable state to the other - one 
spring actuator was employed to trigger the jump, and two were 
used to reset the structure in readiness for the next jump [16].  

For the anemone indicator, a pair of SMA spring actuators 
were configured to act in opposite directions, as shown in fig 7. 
The SMA actuators were heated electrically, using power from a 
6v lantern battery. A flexible “bowden cable” was used to transmit 
the linear movement of the spring actuators to a stem on the 
underside of the anemone indicator.  When the lower spring is 
heated, the indicator is retracted (fig. 7a), and when the upper 
spring is heated, the indicator is deployed (fig. 7b). Anemone 
indicators in silicone rubber and “rubber-like” photopolymer 
materials were actuated by in this way. 

However, it should be noted that with this particular 
arrangement, if neither of the two SMA springs is heated, then the 
pair come to rest at approximately the mid-stroke position. This 
results in the indicator being positioned between its fully retracted 
and fully deployed states. In order for the indicator to remain fully 
retracted or fully deployed, it is necessary to continue to apply 
sufficient electrical power to one or other of the SMA actuators, to 
enable it to hold its position. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Two-way actuation of the anemone indicator using shape memory 
alloy springs shown (A) retracted and (B) deployed 

NIP25 and Digital Fabrication 2009     Technical Program and Proceedings 797



 

 

Summary and conclusions 
Pressure-responsive anemone indicator devices were 

fabricated by vacuum casting silicone rubber in 3D printed 
moulds, and also by 3D printing the devices directly in a “rubber-
like” photopolymer material (Objet Geometries Ltd Fullcure® 
930).  The response of these devices under a pneumatic pressure 
load was compared. It was observed that once the maximum 
pressure was reached, the devices fabricated in the “rubber-like” 
photopolymer took significantly longer to snap through than 
devices made in silicone rubber.  In may be concluded that the 
photopolymer material has a significantly greater damping effect 
than the silicone rubber which was used in this investigation. 
Strongly viscoelastic behavior has been reported previously in an 
elastomeric photopolymer material printed using the Objet 
Geometries 3D printing system [17].  Two-way actuation of the 
anemone indicator was demonstrated using a pair of shape 
memory alloy springs configured to act in opposite directions to 
one another, in order to pull or push the indicator between its 
retracted or deployed states. However, this particular configuration 
is to some extent unsatisfactory, since power is required to hold 
the indicator in either state.  This negates the bistability of the 
anemone indicator structure itself.   

In relation to robotic systems comprising multiple bistable 
structural elements, Santer and Pellegrino [16] have pointed to the 
advantage that power is not required to hold such a structure any 
of its stable states. Similarly, for the anemone indicator, it would 
clearly be advantageous if power was not needed to hold the 
device in its retracted or deployed states.  

Therefore, ongoing research is directed towards the 
development of an improved method of actuation for the anemone 
indicator.  For example, a small electrically-powered bi-directional 
pump could provide an increase or decrease in pneumatic pressure, 
which would cause the indicator to snap between retracted and 
deployed states. Additionally, the author continues to explore 
possible future applications for smart, responsive devices within 
art, design and robotics. 
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