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Abstract 
Aqueous suspensions of colloidal polymer nanoparticles 

were deposited on glass substrates with different degrees of 
hydrophiliciy using a Dimatix DMP-2831 drop-on-demand 
(DoD) piezo-inkjet materials printer. The results are evaluated 
by optical means with respect to the final morphology governed 
by self-assembly processes.  

1. Introduction and State-of-the-Art 
Functional layers addressing more than only the human 

visual sense require both a microscopic texture and a defined 
nanoscopic structure at the same time. Photonic crystals made 
from colloidal materials can be seen as a layer with such an 
extended functionality as they affect the wave function of 
photons in a way similar to the way conventional 
semiconductors affect the wave function of electrons. Bragg 
diffraction in the bulk part of the crystalline layers gives rise to a 
directed and spectrally narrow photonic stop band in which the 
propagation of the photons is prohibited. Such functional layers 
are ascribed a key role in next-generation photon-based 
information technology [1] or recently an extension of this 
concept to acoustic phononic crystals [2]. For their 
manufacturing, bottom-up procedures based on self-assembly 
have been proven to be fast and facile methods to obtain a 
defined nanoscopic structure on a certain macroscopic area [3]. 
These methods comprise vertical deposition electrophoresis, 
gravity sedimentation, spin coating, fabrication in physical 
confinement cells, and others [4].   

Beyond the named techniques, inkjet printing has certain 
properties to make it an attractive production technique. 
Provided the colloidal raw material can be rendered an ink 
suitable for liquid deposition, it is – at least in the ideal case – 
deposited only at loci on the substrates where it is absolutely 
necessary. Such a direct-write approach is charming especially 
when (i) the run lengths of an application are small or even (ii) a 
personalization of manufactured items is required, and/or (iii) 
simply the materials to be deposited are very expensive. For 
inkjet-printed colloidal materials, the self-assembly is governed 
by the evaporation of droplets on their way towards and of the 
sessile drops on pre-treated substrate.  

Nontheless, the number of attempts that elucidate the role 
of additive liquid-based manufacturing techniques that exploit 
both, the liability of appropriate photonic building blocks to self-
assembly and the technical advantages of inkjet printing, are 
comprehensible. The state of the art is determined in substance 
by Park and Moon [5-8]. Park and Moon did initial studies on 

the formation of colloidal crystal structures using silica [5; 8] 
and polymer [6; 7] colloidal suspensions. In their studies, 
variable parameters are the particle diameter, solids content, and 
ink composition. Substrates are (oxidized) silicon, in part 
covered with a hydrophobic molecular layer. Photonic 
functionality and quality of the printed single drops were 
characterized using microreflectance spectroscopy. Inter alia it 
has been shown, that the structural and photonic quality shifts as 
a function of the particle size [6] and ink composition [8]. 
Consecutively, Perelaer et al. reported on inkjet printing of 
suspensions containing silica microspheres with emphasis on the 
particular contact-line behaviour [9]. Besides inkjet printing, 
microspotting has gained a current attraction [10; 11]. 

 
In this paper we report on inkjet printing of monodisperse 

polystyrene microsphere particles suspended in an aqueous 
environment at two different solids contents on glass substrates 
of different surface energy at variable drop spaces with a 
Dimatix DMP-2831 drop-on-demand (DoD) piezo-inkjet 
materials printer. The aim of this contribution was the 
fabrication of single-drop crystals consisting of ordered 
multilayers. 

2. Experimental 
Colloidal inks were used containing highly monodisperse 

polystyrene microsphere particles suspended in an aqueous 
environment. The suspensions were obtained from Duke 
Scientific {Palo Alto, CA, USA 0.1 % solids content, (300±5) 
nm particle diameter, (57.3±0.9) mN/m surface tension} and BS-
Partikel GmbH {Wiesbaden, Germany, 2.0 % solids content, 
particle diameter (305±8) nm, (46.8±0.8) mN/m surface 
tension}. The surface tension of the inks was determined by an 
OCA20 (dataphysics, Filderstadt, Germany) contact-angle 
measurement system (Table 1).   

Coverslip glasses were used as substrates. All substrates 
were cleaned in ethanol and then rinsed with deionized water 
and dried under a flow of air before the chemical or physical 
treatment. The contact angles on all surfaces were measured 
with pure water droplets (using also dataphysics OCA20, 
sessile-drop modus). The following surface modifications were 
applied: (i) no further treatment (“untreated”), (ii) surfactant 
treatment, (iii) corona treatment, (iv) hexamethyldisilazane 
(HMDS) treatment, (v) octadecyltrichlorosilane (OTS) 
treatment. The surfactant treatment, HMDS treatment and OTS 
treatment were done in a chemical bath according to known 
methods. Corona treatment was performed using a high voltage 
discharge (2.3 kV).  

Table 1: Contact angle on the different surface modifications    
contact angle with pure water 

corona treated surfactant treated untreated HMDS treated OTS treated 
< 10° < 10° 67,7° ± 2,7° 78,7° ± 1,5° 100° ± 5° 
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From the contact angle results in Table 1 it is shown that HMDS 
and OTS treatments decrease the surface energy, whereas 
surfactant and corona treatment increase the surface energy.  

The colloidal inks containing monodisperse polystyrene 
microspheres were printed by using a Dimatix DMP-2831 
laboratory drop-on-demand (DoD) piezo-inkjet materials printer 
(Fujifilm Dimatix Inc., Santa Clara, USA). The system setup 
consisted of a piezoelectric DoD inkjet nozzle with a 21.5 µm 
orifice and a nominal drop volume of 10 pl. The clear distance 
between the nozzle and the substrate surface was maintained at  
1 mm during printing. All samples were printed at ambient 
conditions {(22.3±2) °C and (25.0±4) % relative humidity}. The 
DMP has a build-in stroboscopic drop watcher to allow for a 
determination and optimization of the droplet formation. A ball-
shaped regular droplet ejection was achieved at a voltage of 
(18±2) V, 3 kHz frequency and a pulse width of (11.5±0.5) µs.  

The inks were printed on the differently treated glass slides. 
The test pattern consisted of single droplets with varying dot-to-
dot spaces. The droplets morphology was investigated with 
optical microscopy, confocal laser-scanning microscopy (both 
Zeiss LSM 510), and scanning electron microscopy (SEM, 
Hitachi TM-1000). 

3. Results and Discussion 
Figure 1 shows an overview of typical printing results for 

each treatment and solids content; Table 2 represents some 
parameters of the printed single droplets. For the droplets on 
corona treated, surfactant treated, untreated and HMDS treated 
substrates certainly a higher concentration of the particles is 
recognizable by the outer zone in all structures. This appearance 
represents the in inkjet technology often investigated coffee ring 
effect. It occurs in particular increasingly at the surfactant and 
the corona-treated substrates. In these two cases, the center of 
the single droplet structures is almost particle-free. 

 

Figure 1: Comparison of the single droplet morphology with variation of 
substrate treatment and solids content 

Table 2: Parameters of the single droplets (using scanning 
electron microscopy pictures; numbers of layers determined 
by count) 

 

In the SEM results, the single droplets with 2% solids content on 
OTS do not have any remarkable or increased edge structure 
compared to the other substrates. The center of the deposited 
drop is filled with particle uniformly. Here it results in a very 
homogeneous layer with some dot and line defects. It becomes 
clear that, on the OTS substrates in comparison with the 
remaining treatment methods other self-assembly mechanisms 
are important. Table 2 presents the parameters of the printed 
single droplets derived from the optical measurements.  

Regarding the reproducibility of the deposited droplets, a 
printed line consisting of 20 sequentially printed droplets was 
optically investigated. The excentricity of each droplet was 
determined by an approximation with a superseding circle at 
maximum overlap and measuring the droplet diameter via four 
fixed diameters. Figure 2 shows the results of the measurement, 
with the standard devation for each droplet indicated. It turns 
out, that the drop-to-drop variation in diameter is of the order of 
0.5 µm (amounting thus 5 % of the total diameter). The typical 
excentricity is in the range of 0.2 µm. 

4. Summary and Outlook 
The results of the characteristics of the single droplets 

observed as a function of the surface energy of the substrates are 
summarized in Table 3. It turns out that a high substrate surface 
energy (as it is the case for corona and surfactant treated 
substrates) causes a high drop diameter due to the higher 
spreading of the suspensions in comparison with substrates of 
low surface energy. The surface energy affects also the 
circularity of the structure. In particular, for HMDS and OTS 
treated substrates, almost ideal circle formation (see also Figures 
1 and 2) could be found. Correspondingly, the coffee-ring effect 
is observed at low substrate surface energies at small contact 
angles, whereas angles above 90° necessitate a behavior 
counteracting the coffee ring effect. 
 

 

 

 

 

 corona treated surfactant treated untreated HMDS tretated OTS treated 
solids content 0.1 % 2 % 0.1 % 2 % 0.1 % 2 % 0.1 % 2 % 0.1 % 2 % 
diameter [µm] 50 52 41 33 22 32 16 24 9 12 
layers 1 1 1 2-3 1 1-4 1 2-3 1  2-3 
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Figure 2: Droplet diameter (position of bars) and excentricity (height of 
bars) exemplified for 20 drops printed sequentially in a line on an OTS-
treated glass substrate at 2% solids content  

Table 3: Results of the single droplet structures in 
dependence of the substrate surface energy (“-“ sign: 
small/little/low; “+” sign: high/much/strong) 

substrate 
surface 
energy 

diameter circularity 

coffee-ring 
effect 

appropriate 
behavior 

particle 
layers 

particle-
filling of 

the 
structure 

high + - + - -
low - + - + +

 

The area coverage of the drops is strongly dependent on the 
treatment of the substrates. If the suspension spreads more 
strongly (as for corona and surfactant treated substrates), a 
smaller contact angle restricts the multilayer-formation and the 
large circumference prohibits full area coverage. A contrary 
development is to be noted at substrates with higher contact 
angles where the contact line recedes during the evaporation 
process. Regarding a full area-coverage and multilayer 
formation, deposition of 2% solids contend suspensions on OTS-
treated substrates gave the best results. Furthermore, a variation 
of the particular ink composition as well as clear distances are to 
be performed in order to adapt the self-assembly properties of 
rather all participating materials (building blocks, substrates, 
surfactants, and diluent) governing the relevant structure-
property relationships. In future it is still necessary to proof the 
photonic functionality [12] of the printed layers and to identify 
possible applications [13].  
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