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Abstract

We introduce a method to improve the mechanical stability of
thin sieves by applying a support matrix through inkjet printing.
Different suitable materials are printed in defined structures, such
as honeycombs, either directly on the sieve or on a subcarrier. The
digital technology allows the variation of the three-dimensional
geometry of the printed pattern, whereby an optimum has to be
found between the coverage of the pores, the permeability of the
microsieve and its mechanical stability. The benefit of this method
is the opportunity to produce and apply the microsieves in large-
area-applications.

Introduction

With the main fundamentals about the production of
functional elements through inkjet printing understood [1-4], the
usage of digital fabrication techniques for the build-up of micro-
three-dimensional (u3D) structures is a natural consequence of the
technological development. By additive deposition of polymer
layers on top of each other, architectures having small dimensions
in length, width and height can be realized [5]. Recently, the
positioning of droplets with high accuracy was reported to be used
for manufacturing of micro-porous membranes [6] and micro
lenses [7]. A combination of materials, showing electrical
conductivity or insulating properties, enables the production of
complex structures like crossovers or interconnections for
electronic circuits [8].

The mechanical stabilization of microsieves, which are
produced via the principle of particle-assisted wetting [9,10],
represents a further field of application for inkjet-printed u3D-
structures. Microsieves are membranes with pores in the size of
micro- and nanometers showing a thickness smaller than the pore
size [11-14]. They exhibit high size selectivity and a minimum
flow resistance and are suitable for the application in microfluidic
systems to filter very small volumes of liquids. However,
membranes of this type bearing holes of sub-micrometric
diameters are highly fragile due to their small thickness.
Stabilization can be ensured by mounting the microsieves on a
prefabricated coarse porous sieve-like structure [15]. Compared
with these mounting of two prefabricated structures, the selective
deposition of polymer through inkjet printing directly onto the
microsieve offers the advantage to obtain optimized area coverage
for different pore sizes and membrane thicknesses. Thereby the
stability of the microsieve is maximized at minimal coverage of
pores. Increased stability and decreased permeability can be
adjusted to fulfill individual requirements of different filtration-
applications.
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The purpose of this work is the additive production of p3D-
structures, the characterization of the layer geometry and the
evaluation of the layers regarding the usage as mechanical support
structure for microsieves.

Materials and Methods

The geometry of a honeycomb was chosen as basic unit for
the support structure due to its complex layout having lines in and
across printing direction. Therewith both wet-in-wet and wet-in-
dry printing can be investigated using only one unit. The
description of the print patterns results on the basis of three
parameters (figure 1): the drop space DS (in pm) determines the
resolution and thus the deposited material per area, the radius r (in
px) is the radius of the perimeter of the non-covered free area of
the honeycomb, and the distance a (in px) depicts the width of the
printed lines, the real printed supporting elements.

Figure 1. Geometry of a honeycomb with parameters to compile patterns.

The production of support structures through inkjet printing
was realized with the Dimatix Materials Printer 2831 and its 10 pL
printheads. A customized voltage waveform to control the piezo
element was used. It was printed with one nozzle at a frequency of
3 or 5 kHz.

The final goal is to print supportive structures onto
microsieves that consist of polymerized trimethylolpropane
trimethacrylate (TMPTMA). This polymer has chemical properties
comparable to poly(methyl methacrylate) (PMMA). Hence,
PMMA foil with a thickness of 175 um was used as reference
substrate. After preliminary tests with different polymer inks
1 wt% PMMA dissolved in anisole was chosen for further
examinations. To characterize the ink regarding the formation of
pu3D-structures both, single lines and honeycombs were printed.
The microscopic evaluation of the printed patterns was done with
the mobile USB microscope Cellcheck CIL-ZX-USB (M-Service)
and the layer profiles were recorded with Dektak M8 (Veeco).
Contact angle and surface tension of the ink were determined with
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the Contact Angle System OCA 20-3 (Dataphysics) and the
viscosity was measured with Physica MCR (Anton Paar).

For the accomplishment of stability tests a PMMA membrane was
produced with a calculated thickness of 4.5 um. For this purpose a
thin uniform layer of a solution of 0.15 g ml"' PMMA dissolved in
chloroform was applied manually with a squeegee (gap: 30 pm)
onto commercially available aluminum foil. After printing the
support structure on the membrane, the aluminum foil was
removed with hydrochloric acid.

Table 1. Properties of solvent [16] and ink (measured) at ambient
conditions. Viscosity was determined at a shear rate of 1000/s.

Substance p [g/cm?] n [mPas] y[mN/m] bp[°C] Pv[hPa]
pure anisole 0.9940 1.056 351 153.7 0472
1 wt% PMMAin anisole 1,005 + 0.005 2,40+0,04 35.7+0.04

Results and Discussion

PMMA in anisole as u3D-ink

If one assumes, that a liquid printed along a line resembles a
segment cut off a cylinder parallel to its axis, its cross sectional
area is given by the ratio of volume per length (respectively the
drop space DS and the volume V of the drops) and its borderline
assuming the advancing contact angle 6 (expressed in rad). One
obtains a width of this line at its base given by equation (1) [3]:
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For the fabrication of three-dimensional structures a contact
angle greater than 0° is needed to ensure the possibility for the
polymer to be arranged in the height dimension. The used PMMA
solution exhibits a contact angle of 10° on the PMMA foil.

The evaporation of the solvent after printing gives rise to a
significant reduction in volume. During this process the three-
phase-contact line usually is pinned and connection processes
redistribute material within the line, both processes giving rise to
deposit with non cylindrical geometry. In a first approximation one
might assume that the line has a cross section in the form of a
rectangle, with width given by the value calculated from equation
(1) and its height given by equation (2) [3]:
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To get information about achievable maximal multi layer
thicknesses, single lines with varying number of layers were
printed at a constant drop space of 5 um. Figure 2 shows a typical
cross-section of a line composed of 10 layers. The line shape is
characterized by a strong bulging which results in a varying line
width. The average widths of the printed lines shown in figure 3 fit
well to the value of 260 um calculated from equation 1 and is
within our accuracy independent of the number of layers.
Furthermore, the material does not arrange in a homogenous layer
thickness or in a typical coffee ring shape. A thin layer with an
approximate height of 50 to 100 nm is formed and on top of it a
typical coffee ring structure with a distinctly smaller width of 160
pm arranges. The achieved average thickness by printing 20 layers
is 2 um with peaks between 4 and 6 pm. Due to the fact that there
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was always material in the valley of the coffee ring with
reasonable layer thicknesses between 25 and 60 % of the peak-
heights no strategies were taken into account to minimize the
effect. The values of the average thickness correlate with the
calculated values, if the inner line width of 160 um is used in
equation (2) (figure 4).
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Figure 2. Profile scan of a 1 px wide line at 5 um drop space with 10 layers.
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Figure 3. Line widths at different number of layers at drop space of 5 um.
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Figure 4. Average line thickness at different number of layers, DS = 5 um.
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Regarding the application, the resulting line width at a drop
space of 5 um is too big and also the inhomogeneous line shape is
not satisfying. Thus, experiments with bigger drop spaces were
conducted. Figure 5 shows the resulting line widths.

As done by Soltman and Subramanian, the quality of the lines
can be evaluated and related to different inkjet-typical shapes [4].
Shown in figure 6, lines at small drop spaces (<10 pm) are
bulging, above 50 um they are scalloped and at drop spaces
between 20 and 40 um uniform lines are formed which indicates
the optimum range.
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Figure 5. Line widths at different drop spaces, 20 layers.
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Figure 6. Line quality at different drop spaces.

In summary, for the use of PMMA in anisole as ink for
producing pu3D-structures, the following can be pointed out:
For uniform lines, the optimum drop space is at 20 to 40 um with
resulting widths of 110 to 80 um. By printing 20 layers at 5 pm
drop space suitable layer thicknesses can be achieved. The line
width is independent from the number of layers.

Printing complex structures

When printing more complex structures like honeycombs
some lines are positioned in printing direction and some
perpendicular to it. If only a few nozzles are used to print and a
print system, which generates the print pattern line by line, the
delay between the deposition of neighboring droplets varies
between 0.3 milliseconds and 7 seconds. Thus, depending on the
line direction, a partially wet-in-wet and wet-in-dry-printing
occurs, and therefore, one obtains various line shapes depending
on the line direction (illustrated in figure 7a). In printing direction
(wet-in-wet), a strong bulging occurs; in cross direction stacked
coins are generated. This can be avoided by choosing a suitable
orientation of the pattern like shown in figure 7b. The deposition
delay is about 7 seconds (depending on the pattern length) and
only a wet-in-dry printing takes place. Another possibility is the
increase of the drop space to values where uniform lines are
printed.
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The tremendous advantage of printing wet-in-dry, however, is
that the line width is always minimal and conforms to the drop
diameter. The drop space has no influence on the quality of the
line, even at the lowest drop space of 5 pm no bulging occurs.

a)

print direction

—l

Figure 7. Structures of honeycombs (DS = 5 um, r = 70 px, a = 2 px), printed
line by line with one nozzle and a frequency of 3 kHz, 20 layers; a) with areas
of printing wet-in-wet; b) angled pattern leads to only wet-in-dry printing

When printing the honeycomb of figure 7 with a drop space of
5 um it should be noticed, that the line is printed with a distance of
a = 2 px, which means two drops are set side by side and wet-in-
wet to build the line instead of one. Due to this, a larger line width
could be expected, but the measured values of the wet-in-dry lines
in the honeycomb exhibit widths of 127 + 16 um and are therewith
50 % thinner than the wet-in-wet line (figure 8). The reason for
this is that the material of two printed dots in printing direction is
dried before the next two drops are set in the next printing line —
the dots do not merge together. Additionally the lines do not show
the coffee ring effect. Furthermore the lines of the wet-in-dry
structure exhibit along the middle of the lines a rough layer, but are
consistent at an average height of 2 + 0.3 um and thus suitable for
the application.
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Figure 8. Profile scan of a 2 px wide line at 5 um drop space with theoretically
20 layers. Two dots in printing direction are deposited wet-in-wet, the
complete line-structure is printed wet-in-dry.
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u3D-structures as support matrix for microsieves.

After investigation of the p3D-structure of the PMMA ink on
PMMA foil in detail, larger scaled prints could be produced. An
area of 3 x 1 cm? was printed on a thin layer, which was
prefabricated with a squeegee on top of an aluminum foil. The
parameters of the print pattern for the given example in figure 9
were DS =5 um, = 23 px and a = 2 px, the theoretical area
coverage was 9.33 %. The number of layers was 30.

SUPROTt structure

5 mm

—
Figure 9. Support structure on a PMMA-membrane on aluminium foil.

The aluminum substrate was removed by exposure to
hydrochloric acid (18.5 wt% HCIl in water) and a polymer
membrane was formed, that floated on top of the aqueous phase.
After that the floating membrane was manually lifted off on one
side with a pipette. When lifting up membranes without an inkjet
printed support structure a strong creasing was observed (figure
10a). However, the membrane with the support structure remained
dimensionally stable (figure 10b). This indicates that the
mechanical stability of thin membranes can be increased by
printing a support structure on them.

Figure 10. Lifting membranes out of liquid: a) membrane without support
structure; b) membrane with partial support structure (the area above the
dashed line stays dimensionally stable due to the support structure, the area
below without a support structure creases)
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Conclusion

We introduced a method to produce support structures for
fragile microsieves. Honeycomb architectures were built directly
onto thin membranes by applying a polymer through inkjet
printing. It was demonstrated that suitable structure dimensions
and layer thicknesses can be achieved by using inkjet technology.
The structures enhance the mechanical stability of the membranes.

The polymer PMMA dissolved in anisole was evaluated
regarding its possibility to create u3D-structures through layer-by-
layer lamination. Furthermore it was noticed that printing wet-in-
dry leads to thinner lines at low drop spaces than printing wet-in-
wet. The production process can now be adapted to microsieves.
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