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Abstract 
The goal of spectral encoding is to provide a limited 

dimensional space that preserves as much information about the 
original reflectance spectrum as possible.  Recently, several 
spectral encoding techniques have been suggested by Nakaya and 
Ohta, as a simplified improvement over the LabPQR spectral 
encoding technique.  To directly compare the reproduction 
accuracy between the new techniques and LabPQR a technique 
was developed to quantify the accuracy of three spectral encoding 
algorithms.  Thousands of random spectra were generated and 
converted using the three spectral encoding techniques into six 
dimensions.  The six spectral encoded values were then used to 
regenerate the target spectra.  Simple RMS difference, Delta E 
2000, and Delta E 2000 under a different illumination was used to 
evaluate reproduction quality.  It was found that the LabPQR 
technique maintains higher reproduction capabilities than the 
alternate techniques. 

Introduction 
Human color vision is based on three sets of color receivers, 

or cones that are sensitive to different ranges of wavelengths in the 
visual spectrum.  This trichromacy of human vision allows for all 
colors to be defined as three separate signals to the three different 
cones.  This leads to the natural utilization of three dimensional 
color spaces to describe all visible colors.[1]  Typical color spaces 
are defined by three dimensions related to a specific illumination.  
For example, two samples that are a nice blue might be defined 
under D65 lighting as L*=25 a*=65 b*=-90.  Yet, depending on 
the specific spectral reflection of the samples, the colors might 
look quite different under a different illumination.  These two 
samples are known as metamers, they look the same under one 
illumination, but quite different under another.  Metemeric 
imaging is the foundation of the image reproduction industry.  A 
photograph does not reproduce the spectral information of a scene, 
it reproduces the color of the scene under a specific illumination.  
The same basic assumptions control almost all color reproduction 
processes. 

The limitations of metameric imaging based on three 
dimensional color spaces have been well documented.  König and 
Herzog[2] found that the mean color difference of a large 
collection of spectra imaged under different illuminations can be 
as large as 0.8 ∆E94 and the max difference can be as large as 6 
∆E94.  A solution to this problem might be to define a color sample 
by its spectrum using many more dimensions.  Using the 
reflectance value every 10nm from 400 to 700nm would yield a 
fairly accurate reproduction of the original spectrum, but would 
require a 31 dimension color space.  Utilizing a 31 dimensional 
color space may work for an individual spectrum, but becomes 
unwieldy in the standard color reproduction process.  Rosen and 
Ohta[3] find that using only the standard three dimensional color 
space utilizes a look-up table on the order of 30KB, yet a 31 
dimensional color space would require a look-up table of 
8x1027GB.  The goal of spectral color spaces is to utilize a 

reasonably dimensioned space, yet still be able to transfer more 
knowledge of the original spectrum. 

Overview of three algorithms 

TrW6 
The first algorithm explored is TrW6, as defined by Nakaya 

and Ohta.[4]  Six sinusoidal functions are utilized as eigenvectors 
as defined in equation 1. 
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The six eigenvectors are used to generate six weighting 

factors that solve equation 2, 
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where p(λ) is the original reflectance spectrum.  Solving for wi for 
any p(λ) will generate a six number description of a complete 
spectrum.  Simply multiplying the weighting factors against the 
original eigenvectors will generate a reasonable facsimile of the 
original spectrum in question. 
 

LabRGB 
The second algorithm from Nakaya and Ohta explored was 

LabRGB.  The goal here is that the final six encoding values 
represent a combination of two recognizable three dimensional 
color spaces.  The L*a*b* coordinates of the original reflectance 
sample are found through standard calculations, under a given 
illumination.   Equations 1 and 2 are utilized again to find the six 
weighting functions.  It is assumed that w1, w2, and w3 roughly 
represent R, G, B components based on the sinusoidal patterns.  
Therefore, the spectrum in question can be represented by six 
values of L*a*b*RGB and an approximate color can be referenced 
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simply from the six numbers.  Since the information from 
weighting factor 4,5 and 6 is lost, the reconstruction of the spectra 
contains some added complexity.  First, estimated XYZ values are 
calculated based on the RGB values (w1, w2, and w3) given, as 
shown in equation 3, 
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where E(λ) is the spectrum of the illumination in question.  The 
original L*a*b* values are converted to XYZ and the unknown 
weighting factors (w4, w5, and w6) are calculated utilizing equation 
4. 
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The six weighting factors are again multiplied with the six original 
eigenvectors shown in equation 1, and the approximate spectrum 
generated as the sum.   

LabPQR 
LabPQR[5] utilizes the original L*a*b* coordinates and 

additional dimensions that describe the metameric black.  Several 
different strategies could be utilized to define the metameric black 
space.  For this analysis, a single strategy described by Derhak and 
Rosen that utilized three dimensions for the metameric space is 
used.   

For this approach, a large collection of spectra S is required.  
A reference illuminant is used along with the standard tristimulus 
functions to generate a distilling matrix D, defined by equation 5, 
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where, Xillum, Yillum, and Zillum are the XYZ coordinates of the 
reference illuminant, iλ is the spectrum of the reference illuminant 
and x̄ , ȳ , z̄  are the tristimulus functions.  This distilling matrix 
can be used to find the normalized tristimulus values for all spectra 
using equation 6. 

 

DSC =  (6) 
 

An estimation matrix is calculated using equation 7. 
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The set of spectral differences of the colorimetry to spectra 
estimation can be calculated using equation 8, 
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where I is simply the identity matrix.  The covariance of E is found 
using equation 9, and the eigenvectors and eigenvalues can be 
found by solving equation 10, 
 

TEEW =  (9) 
 

iii vWv λ=  (10) 
 
where vi are the eigenvectors and λi are the associated eigenvalues.  
The 3 eigenvectors associated with the three largest eigenvalues 
are utilized as matrix V as defined by equation 11. 
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The final PQR values are found for a specific spectrum, s, 

with equation 12, and combined with the original L*a*b* 
coordinates give the LabPQR values sought. 
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The reconstructed spectrum is created with equation 13, 

where c is the normalized XYZ coordinates converted from the 
original L*a*b* values using standard calculations. 
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Results 

Spectra Generation 
To test the effectiveness of the three spectral encoding 

techniques, a set of random spectra was initially utilized.  This set 
of random spectra was generated using a modified version of 
Ohta’s simplified method for formulating pseudo object colors.[6]  
The goal is to produce a random spectrum defined at 10nm 
intervals that simulates the smoothness of common spectra seen in 
nature.  The general equation used is shown in equation 14, 
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Δ+−= −−+ 111 22 iiii rρρρ (i = 2,3…31) (14) 
 
where ρi is the reflectance from 0 to 1 for 31 points at 10nm 
intervals from 400 to 700nm.  ri is a random number from -1 to 1 
and Δ is a weighting factor of how much the spectrum is allowed 
to vary from 10nm point to 10nm point.  Ohta found that from real 
world spectra a Δ of 0.03 is reasonable.  Ohta states that the first 
two points of the spectrum should be generated randomly, but 
simply inserting ρ1 = 0.001 and ρ2 = 0.9 into equation 14 shows 
that this assumption will lead to invalid spectra quite often.  To 
limit this failure it was decided that ρ1 would be a random number 
between 0 and 1, and ρ2 would be generated using equation 15. 

 
Δ+= r12 ρρ  (15) 

 
There are still many cases where the spectra generated will 

fail because of values greater than 1 or less than 0.  This was dealt 
with simply by brute force, throwing out all spectra with invalid 
reflectance and generating a new one.   
 

Spectra Reproduction 
The primary goal of all these algorithms is to reproduce an 

original spectrum as faithfully as possible utilizing only six 
numbers as the input to the reconstruction algorithm.  Figure 1 
shows a randomly generated spectrum, and the round trip 
reproduction produced utilizing all three algorithms. 

 
Reflectance Factor vs Wavelength for the Original Test Spectrum and the Three 

Reconstructed Spectra
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Figure 1.  A random spectrum, and the three reconstructions generated by 
the chosen algorithms.  The solid line represents the original spectrum.  The 
three dotted lines represent the reconstructions created by all three 
algorithms based on the six numbers generated. 

There are several ways to quantify the differences between 
the original spectrum and the reconstructed spectrum.  One way is 
to simply calculate the RMS difference between the curves as 
shown in equation 16. 
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Where s is the original spectrum, and x is the reconstructed 
spectrum based on 10nm points between 400 and 700 nm.  
Obviously an RMS of zero would be a perfect match.  For the test 
spectrum showed in figure 1, the RMS values for the LabPQR, 
TrW6 and LabRGB algorithms are 0.0299, 0.0386 and 0.0653 
respectively.  Therefore, for the one test spectrum, it could be 
stated that LabPQR is the best match to the original spectrum.  The 
algorithms were applied to 1000 random spectra and the RMS 
difference calculated for each reconstruction.  The data is plotted 
in a histogram shown in figure 2. 
 

Histogram of the RMS Difference between the Original and Reconstruction 
of 1000 Random Spectra
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Figure 2.  A visual representation of the accuracy of reproduction of the 
original spectra as performed by the three algorithms.  An RMS difference of 
0 is a perfect match.  LabPQR performs slightly better than TrW6.  LabRGB 
shows a significant amount of information is lost in an attempt to utilize a 
combination of two existing three dimensional color spaces. 

Figure 2 clearly shows that for these 1000 randomly created 
spectra, the LabPQR algorithm generates reconstructed curves that 
more closely represent the original spectra. 

Color Constancy 
The real test of a reconstructed spectrum is how well it 

reproduces the same visual color response as the original when the 
illumination varies.  The reconstructions for all algorithms were 
carried out utilizing D65 illuminant.  For TrW6, this is irrelevant, 
because the weighting factors generated and used for the 
reconstruction are simply based on curve fitting and not visual 
perception of color. Both LabRGB and  LabPQR utilize the 
L*a*b* color descriptors, and by definition, the reconstructed 
curve and the original spectra have the same color coordinates 
under the original illumination.  The L*a*b* of the reconstructed 
spectra from all three algorithms was calculated under illuminant 
A, and compared to the original spectra also under illuminant A.  
Figure 3 shows the a* and b* coordinates of four randomly chosen 
spectra in the same quadrant of L*a*b* space.   
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a* b* Under Illuminant A of Random Spectra Reconstructed With Illuminant D65
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Figure 3.  The original spectra are compared to the algorithm spectra under 
illuminant A.  All algorithm spectra were reconstructed using D65.  The L*a*b* 
coordinates were calculated using the reconstructed spectra and illuminant A.  
Again, LabPQR tends to be much closer in a* b* to the original spectra. 

The particular implementation of LabPQR tested here utilizes 
a reference illumination as shown in equation 5.  A new random 
set of 100 spectra was generated, and the roundtrip Delta E2000 
under illuminant A was recalculated for the LabPQR algorithm.  
The results as a percentage of frequency is shown in figure 4. 

 
Histogram of the Delta E2000 of the Original and Reconstructed Spectra Under Illuminant A
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Figure 4.   The Delta E2000 between the original and the reconstructed spectra 
under illuminant A for all 1000 random spectra.  A Delta E2000

 of 0 is a perfect 
match.  LabPQR is clearly a much better match.  TrW6 and LabRGB are 
much closer in Delta E2000 than in RMS difference. 

Conclusion 
The key difference between the LabPQR and the TrW6, 

LabRGB techniques is the source of the eigenvectors used.  The 
TrW6 strategy is simply a curve fitting strategy that requires no 
information about illumination or visual perception at all.  The 
strategy could be employed to generate six dimensional descriptors 
for any curves.  The results show a large proportion of 
reconstructed spectra to have a Delta E2000 of greater than 1 when 
shifting from D65 to illuminant A.  The LabRGB technique 
utilizes the same strategy, but sacrifices accuracy simply to 
provide a six number sequence from which an estimate of general 

color can be obtained from the RGB coordinates.  The RMS 
difference and the Delta E2000 both show that this is a large 
sacrifice of information, as the original TrW6 gives a much more 
faithful reproduction of the original spectral intent.  LabPQR also 
allows for the estimation of original color based on the L*a*b* 
coordinates, but shows much higher reproduction accuracy than 
the TrW6 algorithm.  While the TrW6 and LabRGB algorithms 
may be mathematically simpler, they lead to a decrease in spectral 
accuracy.   
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