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Abstract 
Inkjet is expected to be a promising manufacturing method 

for large size OLED displays. In this development, inkjet quality 
was focused and practical solutions were explored. The developed 
precise ink volume control method with improved inkjet print 
heads enabled uniform material deposition into pixels to the extent 
of 0.4% relative error in range. The achieved quality was 
confirmed using 3.1 inch test panel and complete uniformity of 
light emission was realized. The approach was applied to a large 
sized display to demonstrate that the improved inkjet method is 
scalable for fabricating large sized OLED displays in respects of 
both quality and productivity. 

Introduction  
Mask-less, non-contact, and direct-patterning of soluble 

materials are major advantages of the inkjet fabrication 
specifically for flat-panel display industries. An inkjet print head, 
which ejects liquid droplets containing functional materials from 
multiple number of ejecting nozzles, is scanned along a substrate 
while putting droplets onto the substrate within a swath. 
Unfortunately, no matter how the print head is built with precision 
manufacturing, ejected droplet volume may slightly vary from 
nozzle to nozzle, resulting in striped dark and bright light 
emission, which corresponds to ink volume deviation jetted from 
the nozzles. This kind of nonuniformity is high sensitively 
detected by the human eye, so that it must be eliminated to a level 
of visually imperceptible. 

To eliminate the striped nonuniform light emissions within 
the swath and between adjacent swaths, ink volume must be 
confined within sufficiently-small amount of variation. As printing 
time delay between swaths causes uneven drying at the swath 
borders, ink have to be carefully formulated using high boiling 
temperature solvents. In addition, as same as techniques used in 
graphical inkjet printers, multi-pass or interlacing may be used to 
reduce the uncontrolled errors statistically [1]. 

As the multi-pass method scans print heads many times, it 
slows down throughput and productivity of the inkjet 
manufacturing. Despite all these efforts, none of real OLED 
displays have been presented that attained complete uniformity to 
the level of visually imperceptible so far. 

OLED manufacturing 
Figure 1 illustrates a cross-sectional structure of the OLED 

device. The device region is surrounded by the resin bank to define 
the emitting area on the anode electrode and precisely confine the 
deposited ink without overflowing to another region. To 
accommodate the substrate to the inkjet process, the top surface of 
the bank is made lyophobic and the inside is lyophilic. Three 
organic polymer layers: hole transfer layer (HTL), inter layer (IL) 
and emitting layer (EML) are fabricated by inkjet processing on 

the anode (ITO) layer. To prevent nozzle clogging and 
uncontrolled drying, inks are formulated with high boiling point 
solvent of over 200°C. After depositing ink droplets inside the 
bank, ink is dried and then baked to form a solid thin film of the 
organic polymer. The process is repeated to complete stacked 
layers and a cathode layer is deposited by vacuum evaporation 
over the EML. The typical total thickness of the polymer layers is 
about 150 nm. Finally the device is encapsulated by a counter 
glass. To fabricate a full color OLED display, emitting layer is 
patterned into RGB sub-pixels with different polymer solution inks. 
As the inkjet deposits five materials: HIL, IL, and RGB EML, at 
least five inkjet heads are used. 
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Figure 1. A cross-sectional structure of the OLED device 

Epson’s piezo inkjet heads called MLP type MACH (Multi-
layer Actuator Head) shown in Figure 2 were used in this 
development [2]. The print head is originally for large format 
graphics printers; it has two rows of 180 ejecting nozzles in 1 inch 
swath, i.e. there are totally 360 nozzles in one print head. The print 
head is designed so as to be densely multi-aligned in a machine to 
improve throughput. To make the print head adequate for the 
OLED manufacturing, some structural and material improvements 
were put to this print head. Firstly, some components of the print 
head were replaced with parts made of chemical resistance 
materials. The original print head is well tested for some water 
base inks for graphical printers, while for industrial applications 
variety of organic solvents are used to solve the specific functional 
materials, where they may attack the members of the print head. 
Even if the print head does not show obvious breakdown, some 
minute changes may result in small change in ink volume that 
harms the uniformity of film deposited. In inkjet industrial 
applications, very small amount of chemical contamination may 
affect performance and life time of manufactured electronic 
devices. To avoid these troubles, materials that compose the print 
head must be carefully selected. Secondly, print head body 
stiffness was improved to reduce some structural cross talks, which 
cause deviation of ink volume from the designated values. Thirdly, 
the nozzle shape was optimized to increase jetting droplet velocity. 
These improvements led uniform and stable droplet ejection with 
viscous and viscoelastic polymer solution inks. The typical droplet 
volume of this print head is 10 pico-liters. 
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Figure 2. Epson’s piezo inkjet heads (MLP type MACH) used for the OLED 

manufacturing 

Experimental 
Droplet volume ejected from each nozzle was quantified by 

measuring polymer volume contained in the droplet. Droplets were 
ejected onto a flat substrate and dried to form an array of polymer 
dots. Shape and height of each polymer dot were measured using 
an optical surface profiler system to obtain the volume of the 
polymer solute corresponds to droplet volume of each nozzle of 
the inkjet head. The volume was precisely measured within +/- 
0.2% repetitive accuracy. In the printing sequence, the print head 
can select one of the three different ink quantities at each nozzle 
and each jetting event using the variable sized droplet technology 
(VSDT), which is of Epson’s original inkjet technology. Based on 
the acquired droplet volume information of the print head and with 
consideration for the pixel design, printing sequence was designed 
as a bitmap that defines deposition map of the three different 
droplets of VSDT into pixels. The bitmap algorithm generates a 
bitmap where three droplet volumes are optimally combined so as 
to veil attributes of the print heads in terms of ink volume 
deviation and flatten the total amount of droplets in sub-pixels 
within a panel substrate.  

A new test panel was prepared to quantify the light emitting 
uniformity of the inkjet technology. The panel size is about 3.1-
inch in diagonal, which corresponds to three swaths of the print 
head. In the middle of the panel, there are two lines of pixels 
where each sub-pixel can be driven individually to measure 
applied voltage, current, and light emission of each pixel within 
three swaths. Typical droplet volume and total number of droplets 
for a sub-pixel used in this development were 10 pl and 35, 
respectively. 

Results 
Figure 3 shows green light emission of the test panel 

fabricated by inkjet process without ink volume correction. 
Deposited polymer film thickness reflects droplet volume 
distribution within a print head. The inkjet head runs from top to 
bottom of the test panel depositing droplets into sub-pixels shown 

in Figure 3. After putting inks in a swath, head moved to the right 
for another swath. The multi-pass or interlacing was not used. 
Hence, obvious dark boundaries between the swaths and a lot of 
dark and bright stripes in the swath are seen in the panel, which 
represent the trend of droplet volume distribution of the print head. 

Figure 4 shows light emission with ink volume correction. 
The dark and bright stripes shown in Figure 3 are completely 
eliminated and uniform light emission from the OLED has been 
achieved.  

 

 
Figure 3. Green light emission of the test panel without ink volume correction 

 
Figure 4. Green light emission of the test panel with ink volume correction 

The pixels on the two black lines that lies horizontally in the 
test panel images are for individual pixel to pixel measurements of 
light emission characteristics. Figure 5 shows measured light 
emitting power along the pixels for the individual measurement. 
The data covers just three swaths of the printing process. Without 
the ink volume correction, the emitting light power spreads in 
about 50% of the average value. On the other hand, with the ink 
volume correction, the measured emitting power lies within the 
range of 4.7% driven at a constant voltage.  

Using the same bitmap as that used to fabricate the test panel, 
polymer dots were formed on a flat substrate to measure the ink 
volume jetted into the sub-pixels. The quantitated ink volume 
deviation of sub-pixels was about 6% in the case of without ink 
volume correction and it was improved to only a range of 0.4% 
when the developed ink volume correction was applied. 
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Figure 5. Emission light power for three swaths with and without ink volume 

correction of the test panel 

As a result of the development, we applied the improved 
inkjet method on fabrication of an active matrix color display 
(AM-OLED). The specification of the manufactured AM-OLED 
display is shown in Table 1. The backplane of the display was a 
low temperature poly-Si TFT (LTPS). The device structure was 
bottom emission and pixel resolution is 60ppi, which corresponds 
to a resolution of 37-inch full HD display.  

Uniform light emission from the OLED display was achieved 
by the improved inkjet method in the same way as the test panel.  

Table 1: Manufactured AM-OLED Specifications 

Display Size 14-inch diagonal 

Resolution 60ppi 

Aperture ratio 40% (R:G:B=1:1:1) 

Color 6-bit full color 

Luminance 200cd/m2 

Driving Method LTPS TFT based Active Matrix 

TFT-OLED Bottom-emission 
 

Summary 
In this work, we have developed the improved inkjet method 

specialized for manufacturing of OLED displays. It is important 
that ink volume from inkjet head nozzle is controlled correctly to 
fabricate large sized OLED displays with uniform light emission. 
The inkjet head was improved suitable for deposition of polymer 
solution inks. Droplet ink volume of each nozzle was quantified by 
precisely measuring the polymer solute content with the optical 
surface profiler system. The volume measurement accuracy was 
within +/- 0.2% in repeated tests. The accurate ink volume 
correction was done with the VSDT in accordance with the ink 
volume information obtained from the measurement.  

The developed technology was applied to a newly designed 3 
inch diagonal test panel to confirm the accomplished quality level. 
As a result, uniform light emission from the OLED display was 
achieved. The technology eliminates the use of multi-pass or 
interlacing inkjet printing, where a large number of nozzles are 
used to fill a pixel to reduce the volume error statistically, and the 
use of additional external signal compensation. Consequently, the 
developed technology reduces the cycle time and device cost and 
increases productivity. The developed technology was successfully 
expanded in applicable display size from 3 inch to 14 inch in the 
same manner, hence, it verified the scalability of the inkjet OLED 
manufacturing method. 
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