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Abstract
In recent years, Conditional Random Fields (CRF) are 

proposed and proved greatly useful in natural language 
processing, voice recognition and computer vision. In this paper 
we propose a variant of CRF to solve the problem of image 
binarization. Unlike previous image binariztion approaches, the 
Patch Random Fields (PRF) proposed here could provide global 
optimal solutions considering both the local information from 
source images and pixel-wise smoothness. In this new framework, 
we take image patch as a kind of raw information carrier and 
model it with mixture of probabilistic PCA. Moreover, traditional 
CRF always confronts difficulties in obtaining proper parameters 
for the probabilistic models; this process is often time-consuming 
and intractable. To mitigate this problem, we train most 
parameters in a generative way, and then optimize the remaining 
parameters using a gradient descent method. The advantages of 
generative models and CRF are thus well combined. Experimental 
results demonstrate our method’s effectiveness. 

1. INTRODUCTION 

Our work is related with three research fields: image 
binarization [1, 2], conditional random fields (CRF) [3-8] and 
patch-based methods [9]. 

Image binarization is an important research topic in the field of 
image processing. For an input image, the desired output is a 
black-and-white image. Image binarization is especially useful for 
document image analysis, scene processing, quality inspection of 
materials, etc. M. Sezgin and B. Sankur [1] provide an exhaustive 
survey of popular approaches for image binarization. They could 
be roughly divided into six categories: histogram shape-based 
methods, clustering-based methods, spatial methods, local 
methods, clustering-based methods and object attribute-based 
methods.  

For the task of image binarization, information such as the local 
statistics could be indispensable for accurate pixel classification, 
which is mainly because many input images don’t have uniform 
intensity or contrast throughout the entire image appearance. An 
example could be found in Fig. 1, where a global thresholding 
technique without local hints will fail. However, current locally 
adaptive thresholding approaches mostly work in a per-pixel 
manner, which are insufficient to handle difficult images. On the 
other hand, most of the global methods have difficulty in 
incorporating local statistics. To sum up, none of the above-
mentioned approaches has utilized a framework which could 
combine local information and consistency within 
neighborhood. It is the main problem our work sets out to 
solve. 

Conditional random fields (see [3]) provide a probabilistic 
framework for learning parameters and inference. Originally 
designed for labeling sequence data, it is later extended for voice 
recognition and computer vision. Various variants of CRF are 
proposed [5-7]. In this paper we propose a modified version of 
CRF, Patch Random Fields (PRF), to take advantage of the 
tractability of the generative models and simplify the optimization 
of parameters. 

(a)      (b)      (c) 
Fig. 1. Illustration for the limitation of traditional global thresholding methods. 
The two small circles in (a) have grayscale intensity slightly less than 128, 
which is half of white color’s. Threshold below or above 128 both fails for this 
special case (See (b) and (c)). 

In this paper, we choose image patch as basic information 
representation [9]. It is partly because patches could be efficiently 
calculated and carry rich information about local appearance for 
an image. Our observation lies in that if one knows enough about 
the local, then he might make decisions globally. In our work, we 
sample patches with predefined size from the training images as 
the sources of the following clustering operation. We model 
appearance patches with mixture of probabilistic PCA [10], which 
is proved efficient and effective for noise removal and dimension 
reduction. Under the framework of CRF, parameters are learned 
by maximizing pseudo likelihood. 

2. PRINCIPLES OF OUR METHOD 

2.1. Conditional random fields  

Unlike traditional Markov random fields (MRF), conditional 
random fields which are proposed by Lafferty et al. [3] in 2001, 
directly model the posterior, rather than the joint probability of the 
observations and latent variables. This subtle difference relaxes 
the independent identical distribution (i.i.d.) assumption for 
distinct observation variables which tends to cause errors in many 
cases ([3]). Moreover, modeling the dependences among 
observations variables is a difficult task, sometimes even 
impossible. The conditional property of CRF means that it doesn’t 
require unnecessary modeling efforts. Graphical models for MRF 
and CRF could be found in Fig. 2. 
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Fig. 2. Graphical models for Markov random fields (left) and conditional 
random fields (right). Observation variables are colored in gray. 

We adopt the notation of [5] and [7], the definition of CRF is 
given as follows: For two random fields x and y, where y
represents latent variables and x corresponds to observations 
(pixel intensity, color vector, etc.), Let G = (V, E) be a graph such 
that y = (yi), i is the node index. We said that (x, y) is a conditional 
random field if y obeys the Markov property:  

),|(),|( }{ iNiiSi yxypyxyp                    (1) 

Where Ni denotes neighbors of variable yi, and S-{i} is the set 
of latent variables removing yi from S.

According to the Hammersley-Clifford theorem [11] and using 
only up to pairwise clique potentials, the posterior of y given x
could be written as, 
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Where Z(x) is the partition function. 

2.2. Patch random fields  

There are various definitions for the association potential and 
interaction potential (here we follow the notations in [7], the two 
terms correspond to the unary potential and pairwise potential in 
(2) respectively). In [8], J. Weinman et al. use one set of 
observation features for nodes and edges and transform them into 
feature functions. While in the work of DRF (discriminative 
random fields) [7] and SVRF (support vector random fields) [5], 
they use a Generalized Linear Model (GLM) in the form of 
logistic function and Support Vector Machines (SVMs) 
respectively.  

However, the assumption of linear separability doesn’t 
always hold, even in a very high dimensional feature space. 
Instead, our motivation lies in that image patches itself contain 
rich and raw information for many image processing and 
computer vision tasks, such as image binarization. Thus we 
directly model image patches using mixture of probabilistic 
PCA [10] to relax the above-mentioned assumption, rather than 
mapping from data space into a high dimensional feature space. 
Moreover, this also simplifies the optimization of parameters, 
which is discussed in details in Section 2.3. 

2.2.1. Association potential 

In our implementation, we sample all the 7*7 image patches 
from one or several training images, and treat them as the training 
dataset for a mixture of probabilistic PCA. Given the ground truth, 
each of these patches is cast into two predefined categories: 
“foreground” or “background”. In this way we obtained training 
patches for the two mixture models: one for foreground, the other 
for background. The association potential could then be 
represented as, 
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Where  is the Dirac function, and vx  is the image patch 

centered at node v.  is -1 for “background” and 1 for 
“foreground”.  are parameters for PCA mixture models. P
denotes probability density function for label .

2.2.2. Interaction potential 

Association potential describes the degree that observations 
match variable labels, while interaction potential indicates local 
consistency between adjacent variables. Unlike the homogeneous 
and isotropic Ising model used in traditional MRF, we encourage 
similar labels only in the sites where observations support such a 
consistency. 
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Where  denotes 2-norm for image pixel intensities, and w

is the parameter to be optimized. 

2.3. Parameter learning and inference 

We uses a two-step approach to optimize parameters for 
potentials, which is mainly because the fact that estimating 
parameters for mixture models and local consistency 
simultaneously would be intractable. 

Firstly, we ignore parameters of the Ising model and get 
parameters for association potential by clustering. The two 
clustering centers and priors are initialized by k-means and refined 
using iterative Expectation-Maximization algorithm. 

In the second stage, parameters of interaction potential are 
then estimated using pseudo likelihood [7]. The posterior is 
approximated in a factored form: 
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Since it is reported [5, 7] that pseudo likelihood tends to 
overestimate the parameter w, we thus alleviate this problem by 
introducing a Gaussian prior for w such that (see [7]): 
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Where  is a positive constant. 
Given M independent training images, the interaction parameter 

w could then be obtained by maximizing the log-likelihood: 
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The optimal value for w could be found by gradient descent. 
After we have acquired all the potential parameters, it is 
straightforward to assign label -1 or 1 to each pixel for a testing 
image using graph cuts [12]. 

3. EXPERIMENTAL RESULTS 

Fig. 3. An example of the training images (left) and its ground truth (right). 

We collect a set of Chinese calligraphy artworks, select one or 
several images as training images (see Fig. 3), and keep the 
remaining for testing. The experimental results are given in Fig. 4. 

(a)             (b)

(c) (d) 

(e)             
Fig. 4. Experimental results for an image. (a) testing image. (b) ground truth. 
(c) global thresholding method with threshold set to 128. (d) Gaussian 
clustering-based method. (e) our method. 

(a) 

(b) 
Fig. 5. We represent centers of mixture of probabilistic PCA as 7*7 image patches, which are sorted in descending order according to their priors. (a) 
image patches for the background model. (b) image patches for the foreground model. 

We compare our method with other two methods: global 
thresholding method and Gaussian clustering method. As is seen 

in Fig. 4, our method has better visual appearance and lower 
classification error rate (0.0155) compared with other two(0.0244 
and 0.0409 respectively). In the implementation, we use mixture 
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models consisting of ten components. The original image patches 
sampled from source image have a size of 7*7, and are finally 
reduced to 10-dimension by PCA. Also, centers of the mixture 
models in the form of image patches could be found in Fig.5. 

4. CONCLUSIONS 

We have presented Patch Random Fields, which is a variant of 
CRF, and applied it for the task of image binarization. In our 
approach, image patches are sampled and play a central role in 
extracting information that is useful for our task. To reduce the 
difficulties of estimating parameters for these probabilistic models, 
we propose a two-step method, firstly learning parameters for the 
mixture models in a generative style, which is proven efficient. 
However, better methods would be explored to avoid the over-
estimating effect in the optimization of the interaction potential’s 
parameters.  
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