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Abstract 
In this paper we describe the advances made in high 

accuracy, high performance destination color profiling 
technology for use in digital printers. A profiling technology, 
configured to produce (a) an initial estimate in the factory of a 
fine tuned GCR strategy and gain matrices as starting LUTs, 
and (2) a runtime profiling technology for adjusting colors 
before production run by the customer on a drifted print engine. 
Key new algorithms presented are: Co-operative Neighbor 
Driven  Gray Component Replacement (GCR) algorithm and 
control-based inversion. These algorithms are used with other 
known suite of algorithms to make a complete practical 
profiling  technology.  

Introduction 
A profile contains a multidimensional color correction 

look up table (LUT) comprising a series of nodes in input 
color space (L*a*b* or XYZ), and device-specific 
(CMYK) output values stored at each node. When the 
input pixels to be corrected coincide with the nodes of the 
LUT, the corresponding device specific color values are 
retrieved directly from the LUT. If the pixels are not on 
the node, then they are derived via interpolation of 
neighboring nodes using a standard technique such as 
tetrahedral interpolation. 

In general, the first step in building a profile is to 
derive a forward model that maps a device-specific 
(CMYK) representation to a visual (L*a*b*) color 
representation. Numerous modeling techniques have been 
used.  Some are based on experimentally generated data, 
some are based on a first principle approach such as a 
spectral cellular Yule-Nielsen-corrected Neugebauer 
model (SCYNN), and some are a combination of both. 
The next step in the profiling process is to invert the 
aforementioned printer model to produce a mapping from 
a visual (L*a*b*) representation to a device-specific 
(CMYK) representation that produces smooth, contour-
free, noise-free and pleasing color prints.  

Our approach towards creating high accuracy color 
profiling involves two steps; (a) the creation of an initial 
estimated LUT in the factory with a well tuned GCR 
strategy for a pre-selected number of nodes and gain 
matrices for each node and (b) a run-time (in-field) 
profiling technology with control-based inversion, gamut 
mapping and black point compensation algorithms. The 
in-factory profile allows developers to tune the GCR at 
the expense of reasonably long computational time. 
Whereas, the run-time profile involves little or no 
operator intervention to create and update profiles based 

on the measured color output of the device at the time of 
creating profile updates. Next we will present a brief 
overview of the algorithms and make references, as 
required, to published documents. 

In-Factory Profiling 
In this section we describe how new algorithms were 

integrated to generate a fine tuned ICC profile with no or 
limited formulation jumps for a four color printing 
system. A key output from this section is the well-tuned 
halftone screen specific starting LUTs comprised of GCR 
and gain matrices.  

 
 

 
 
 

 
 
 
 
 
 

 
 

Figure 1: Block diagram view of the in-factory profiling technology 
 

Figure 1 shows the block diagram view of various 
algorithms used in the in-factory profiling technology. 
Figure 2 shows the components within the ICC profile 
that translates color information from the Profile 
Connection Space (PCS) to the device-specific CMYK 
space. For the creation of a colorimetrically accurate 
destination ICC profile, we generate a dense RGB grid 
with node levels defined as inputs (e.g., 17 cube grid). 
These RGB nodes are then converted to L*a*b* using a 
suitable color space (e.g., ProPhot RGB). These RGB 
nodes (colors) are then separated into in-gamut and out-
of-gamut nodes (colors). The out-of-gamut colors are 
mapped to the gamut surface using any known gamut 
mapping algorithm (e.g., cusp gamut mapping). There is 
no need to select the optimal (best) gamut mapping for in-
factory profiling function, since the starting LUTs do not 
carry this information. They contain CMYK values only 
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for in-gamut colors. The in-gamut colors are now 
subjected to GCR constrained inversion. 

 
Figure 2: Block diagram view of theICC profile components 

Gray Component Replacement (GCR) 
For high quality color printing, image 

separations should not be noisy.  One source of noise is 
large changes in formulation between neighboring nodes. 
This can arrise because most colors can be made with a 
wide range of CMYK formulations, and thefore the 
formulations for neighboring nodes can be very different.  
These formulation jumps and can appear as noise or 
contours. For example, neutral colors can be produced 
with an infinity of CMYK recipes.  

The GCR approach gives a smooth transition between 
every neighboring node in CMYK space. The smoothness 
is preserved by using two novel algorithms; (1) a MIMO 
control algorithm and (2) a neighbor detection algorithm 
in L*a*b* space. Neighboring pairs cooperate mutually 
by exchanging information in order to provide a smooth 
transition between them in the CMYK space. This work 
differs from other approaches in the sense that both 
nodes’ accuracy and smoothness are controlled in one 
step. If the smoothness is not preserved, which may occur 
in some cases (e.g., when the printer is highly nonlinear 
or when the nodes are sparse), a multi-dimensional 
filtering algorithm is used to further refine the 
formulations.  

Cooperative Neighbor Driven GCR Algorithm 
While deriving the GCR algorithm, we assume that the 

CMYKA values of a particular node A or a set of 
neighboring nodes are known. Figure 3 shows an 
example of the known input CMYK values for the nodes 
along the neutral axis. This could be obtained from a 
computer generated curve fed as input to the in-factory 
profiling technology as indicated in Figure 1. Using this 
information, the printer model, and the right inversion 
algorithm, it is possible to estimate the “closest” CMYKB 
values of the “closest” node B, with respect to node A, in 
terms of a distance metrics in the L*a*b* space. When 
multiple CMYK solutions are present, as in a four color 
CMYK printer, at the moment of deciding a CMYK recipe 
for a particular node (node B), this approach offers the 
possibility of selecting the one CMYK which is closest to 
the CMYK recipe of the neighboring node.  

In order to create smooth CMYK recipes for all the 
nodes, starting from say the CMYK values for colors near 
the neutral axis, we define two groups that contain set of 
L*a*b* values of the nodes. The first group is called the 
“recruiting set” that contains one or more L*a*b* values 
with their respective CMYK values. The second group is 
called the “candidate set” that contains only their L*a*b* 
values without the knowledge of their CMYK values. The 
goal of the recruiting set is to determine potential nodes 
from the candidate set that could become part of the 
recruiting set. The goal of the candidate set is to market 
themselves before the recruiting set in order to be 
recruited. This approach is described in detail in the 
upcoming book chapter [4]. The algorithm steps are 
shown next: 
1. Define a recruiting set R = {1,2,…,N} that contains N>=1 
L*a*b* nodes. The location of these nodes in the L*a*b* space 
could be decided by the designer. One option is to allocate one 
or more nodes along the neutral axis as in Figure 3. Thus, we are 
forcing these colors to behave the way we want along the 
neutral axis since the profile that will be built will inherit the 
CMYK values for this set.  
2. Compute the CMYK values of all the nodes in the 
recruiting set.  If these points are along the neutral axis, use the 
curve shown in Figure 3 for the initial estimate. 
3. Define a candidate set C = {1, 2,…,M} that contains M 
number of L*a*b* nodes. This list comes from all the nodes in 
the LUT. 
4. Determine the candidate node to be recruited next. This can 
be done by gradually increasing the radius of a cylinder from 0 
all the way until all the nodes in the LUT are recruited. 

 
Figure 3: CMYK response of GCR along the neutral axis. X-axis has the 
range from L*=0 to L*=100 and y-axis ranges from 0 to 255. 

 
5. Compute the CMYK values for the closest node using the 
CMYK value of the node in the recruiting set as a starting point. 
The recruiting process is neighbor driven since it always selects 
the nodes with the minimum distance between any recruiting 
and candidate nodes. Once a pair of nodes has been identified, 
the cooperation takes place since the CMYK values of the 
recruiting set is shared with the candidate set. The candidate 
node uses a MIMO controller of Figure 4 to iterate several times 
and converge to a new CMYK value that is close to its closest 
neighbor.  
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6. The closest node identified in 5 above now becomes part of 
the recruiting set, i.e., R = R + {j*}, and no longer belongs to 
the candidate set, i.e, C = C –{ j*}. 
7. Repeat algorithm steps from 4 to 7 until the set C is empty. 
That is, until there are no more candidate nodes to recruit. 

MIMO Controller  
The sharing of information, combined with the 

feedback control system approach, is used to compute the 
closest CMYK value of the selected color in the candidate 
set to the CMYK value of the color in the recruiting set. 
We design a MIMO state-feedback controller and operate 
on the printer model to update the CMYK recipe that will 
accurately reproduce the given target L*a*b* value. The 
feedback system shown in Figure 4 modeled in Reference 
[2] is expressed as a state equation of the form 

)()()1( kBukAxkx +=+  where x(k) represents the vector 
containing output L*a*b* values at iteration k, A is the 
identity matrix and B is the Jacobian matrix for the node 
color computed around the initial CMYK value, and u(k) 
is the control law applied to the input of the printer.  

 
Figure 4: A MIMO state-feedback loop used (a) to obtain new CMYK recipe 
for neighboring nodes and (b) in the in-field profiling technology (Figure 6)  
 

The control law is designed using MIMO state-
feedback theory. Thus, )()( kKeku −= , where e(k) is the 
error between the target L*a*b* and the output L*a*b* 
value from the printer model at iteration k for each node. 
The gain matrix, K, is obtained from the Jacobian matrix 
using the pole-placement algorithm discussed in detail in 
Reference [2]. The Jacobian and controller parameters of 
the closest candidate node are computed using local 
information of the recruiting node. Due to the nonlinear 
response of the printer, the transformation to L*a*b* can 
lead to under sampling in some areas with high curvature 
and over sampling in other areas with less curvature. As a 
result, the Cooperative Neighbor Driven GCR Algorithm 
can give formulation jumps. This can be avoided by 
increasing number of nodes and/or by filtering the 
CMYK values using multi-dimensional filtering 
algorithms [2] and then by rerunning the GCR algorithm 
with new CMYK values until a desired smooth 
formulation is obtained (Figure 1).  Once this process is 
finished, we have the CMYK values for all the in-gamut 
nodes. It is to be noted that the gamut we have 
constructed for the printer model shown in Figure 4 is 
extended slightly outside the gamut of the normal printer 
(see Figure 5). The starting LUTs should contain CMYK 

values not only for the in-gamut nodes of the normal 
printer, but should also contain CMYK values for the 
nodes inside the extended part of the gamut.  This is 
required while building profiles in the field on a drifted 
printer. 

 
 

Figure 5: A hyper-extended gamut used to produce CMYK and gain 
matrices in the starting LUTs  (Wired mesh: hyper-extended gamut 

produced using a printer model; solid: normal printer gamut)  

In-Field Profiling 
Components of algorithms used inside the in-field 

profiling technology is shown in Figure 6. This uses node 
levels, starting LUTs and the updated printer model as 
inputs to produce ICC profile with colorimetric and 
perceptual rendering LUTs.  

Figure 6: Block diagram view of the in-field profiling technology 
 
The gamut mapping algorithm we have used is a 

combination of cusp, where colors are mapped to the 
gamut surface in the direction towards a neutral color 
whose lightness matches that of the cusp color, which is 
the most chromatic color of the same hue [5]. One of the 
issues with this method is that in dark regions, it can 
result in excessive shifts in lightness. It can also result in 
objectionable chromatic noise when dark colors span a 
wide range of hues. To address these issues, a modified 
mapping has been developed, which begins with cusp 
mapping for light colors, and gradually blends towards a 
lightness-preserving mapping for dark colors. This 
method has been shown to successfully alleviate both the 
aforementioned problems.  
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A similar control-based inversion algorithm as shown 
in Figure 4 with initial/nominal CMYK values from the 
starting LUTs is used to find the final CMYK recipe for 
each node.  The inversion approach can also be 
implemented by iterating directly on the printer or by 
iterating on the updated printer model. Iterating on the 
printer can be an architecturally challenging task in high 
end production printers.  

Black Point Compensation 
RGB images often contain colors that are darker than 

the darkest color a printer can make.  Minimum color 
error could be obtained by mapping the out of gamut 
colors to the darkest color the printer can make.  However 
in that case, all details in these shadow regions would be 
lost.  They often contain information the viewer knows 
should be there (the folds of a dark coat, the strands of 
dark hair), and their absence is very disturbing. We have 
adopted a technique for black point compensation in the 
perceptual LUT that retains these details, though at 
reduced contrast, and at the cost of lightening some of the 
darkest colors.  In one version of the technique the 
compensation curve tracks the darkest color the printer 
can make, while in another version, it is fixed. The curve 
is an input L* to output L* function.  The parameters of 
the curve are the lightening at an input L* of 0, and the 
amount of contrast in the shadows (the slope of the curve 
at L* = 0).  The curve is parabolic in the shadows, and 
goes smoothly to an identity transform for lighter colors.   

Conclusions 
RGB and CMYK images have been converted to 

produce pleasing color with emphasis on accuracy, image 
quality and processing speed. In this paper we describe 
new algorithms that resulted in round trip inversion 
accuracy of nearly zero at the nodes, which combined 
with good gamut mapping and black point compensation 
algorithms, produced improved image quality when 
compared to previously known technology. These 
solutions are now being integrated in variety of forms in 
several digital production class printers using inline and 
offline spectral sensors.  
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