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Abstract 
In this paper, we present an algorithm for detecting 

monochrome pages in a color copy job on a multi function printer 
(MFP) with a contact image sensor (CIS) based scanner. Once 
detected, a monochrome page can be processed as such, which can 
improve image quality, print speed, and save color-printing 
supplies. The presented algorithm processes the RGB color data 
captured with the CIS scan bar for a given scan band and keeps 
track of color information across all scan bands moving down the 
page. The colorfulness of every pixel in the scan bands is derived 
from the Cb and Cr channels after color conversion from the RGB 
to the YCbCr space. A pixel is classified as color if its colorfulness 
value is greater than a predetermined device and media specific 
threshold. This threshold is found by modeling the cumulative 
colorfulness histogram of a number of scanned test documents 
using a mixture of two Gaussian distributions and the Expectation 
Maximization (EM) algorithm. For every scan band, the highest 
concentration of color pixels is saved, and later used to classify the 
page content as either color or monochrome. 

Introduction  
Multi function printers have become prevalent in recent years, 

because they are designed to offer high functionality at relatively 
small size and cost. Common MFP functionality includes print, 
scan, fax, and copy. The copy function involves a scan of the 
document, either on the flatbed glass or through the automatic 
document feeder (ADF), followed by printing the digitized 
document. In order to offer high speed at low cost, most MFP’s 
employ contact image sensor based scanners. The CIS is an 
intensity sensing bar that typically spans the width of the 
document. As the scan bar moves down the document page, red, 
green, and blue light is shown on the portion of the document in 
front of the scan bar. This enables the CIS to obtain RGB intensity 
values of the scanned document – one color at a time. The data is 
then processed in an image processing pipeline [1], that prepares 
the document’s RGB image for printing and alleviates scanner 
induced defects such as color fringing, aliasing, color noise, and 
blurring.  

Color fringing occurs because the CIS scan bar does not stop 
as it strobes the red, green, and blue light to illuminate the page 
content. This causes the R, G, and B pixel values to not be 
representative of the exact content. Aliasing is caused by page 
content that is of higher spatial frequency than the scan resolution. 
High frequency content appears as lower frequency distortion in 
this case. An anti aliasing filter can mitigate this problem by 
removing the frequencies higher than the scanner can resolve. 
Color noise appears as random color variations in the scan and is 
due to inherent noise in the scan bar sensors, which causes 
differences between the color channels. A color neutral gray patch, 
for example, must be recorded as equal parts of red, green and blue 

signal – it will have hue otherwise. In general, noise in the scan bar 
is likely to cause unequal R, G, and B values for a gray pixel. 
Blurring is caused by imperfect lenses and optical elements, and is 
mitigated using sharpening filters. In addition to these hardware 
related defects, page content also requires special processing. 
MFP’s usually offer different settings, or copy modes, to process 
the document content uniquely, such as photo, graphics and text. 
Figure 1 shows an enlarged region in a raw CIS RGB scan of an 
electrographic print including a magenta fill and numbers printed 
with black toner on plain white paper. The enlarged region 
illustrates scan defects such as color noise and color fringing. The 
isotropic color noise is evident in the flat areas of the solid 
magenta and paper white. This causes color neutral document 
content to appear slightly colored, i.e., have non-zero chroma. In 
addition, color fringing causes red and blue color traces along 
horizontal edges as can be seen around the black number 
characters in the figure. This also introduces color pixels into the 
scan even if the content is color neutral. Another source of colored 
pixels is the back side of the document, as colored content can 
show through the page from the back side, especially when the 
paper is thin [2].  

This paper presents an algorithm for the detection of 
monochrome pages in a copy job on an MFP with a CIS based 
scanner. When a monochrome page is recognized, it can be printed 
as such, which saves color printing supplies, time, and energy. A 
similar objective has been presented by Dong et al. [3]. A 
color/monochrome page classifier has been implemented as part of 
an automatic copy mode selection heuristic. Their solution divides 
the scanned image into blocks with tunable size. The colorfulness 
of pixels in each block is computed as the Manhattan Distance 
from the neutral axis in the RGB color space. The colorfulness of a 
block is defined as the average colorfulness of the pixels contained 
within the block. Using a threshold for block colorfulness, a page 
is classified as color if at least one block was deemed colorful. On 
a higher level, Hirota et al. describe methods for classifying a page 
as either color or monochrome based on analyzing the proportions 
of color present in the image blocks [4]. Additionally, Handley 
shows how to apply the Expectation Maximization algorithm to 
classify pixels in color scans into either background or foreground 
pixels, based on processing the pixels in the CIE L*a*b* color 
space [5, 6, 7].  

Our algorithm also divides the scanned image into blocks; 
however, the blocks are processed one scan band at a time to find 
the percentage of colorful pixels within the blocks. For a given 
scan band, only the maximum percentage of color amongst all 
blocks is saved for later processing when the last band is scanned. 
We define the colorfulness of a pixel as its distance to the neutral 
axis in the YCbCr opponent color space [8]. A colorfulness 
threshold is used to classify a pixel as color or monochrome. This 
threshold can be manually set, by trial and error, such that the 
pixels are properly classified given the specific device and media 
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at hand; however, our approach computes the cumulative 
colorfulness histogram of a number of representative color and 
monochrome test documents, and models it using the Expectation 
Maximization algorithm to find the best two Gaussian distributions 
that model the monochrome and color classes. The optimal 
threshold for colorfulness is then, the intersection of the two 
distributions. One advantage of this approach is that the cumulative 
colorfulness histogram model accuracy improves the more test 
documents are included in the analysis. After the data from the last 
scan band has been processed, the algorithm analyzes the 
maximum concentration of color pixels in each band’s blocks. The 
result is a graph with peaks at the band locations that have a high 
color concentration. 

The results show that this approach is robust to isolated color 
pixels from color noise or show-through, while still detecting small 
regions of concentrated color such as an isolated colored word or 
letter. The processing required to implement this solution as a copy 
mode feature is relatively small and includes analyzing each pixel 
only once for colorfulness, and counting each colored pixel once. 
In addition, the value of the maximum color concentration must be 
saved for each band and compared to a threshold. This simplicity 
enables its implementation in a low-end image pipeline. 

 

 
Figure 1. An enlarged portion of a raw CIS scan of a laser print of a magenta 
fill and black numbers on white paper showing blur, color fringing, and noise.  

Color Processing 
Typically, when a page is scanned, a scan bar moves down 

the page while illuminating the portion of the page in front of the 
scan bar sensor. The scanner collects the RGB intensities of pixels 
in the scan band and starts processing them immediately, before 
the scan bar reaches the end of the page. This approach is cost 
effective because the scan bar sensor is a relatively expensive 
element and can be kept small. In addition, the small scan bar 
sensor minimizes the amount of data that must be processed per 
unit of time. This reduces memory requirements, and simplifies the 
processing hardware.   

The multi-function printer used in this experiment processes 
the scan band pixels in the YCbCr opponent color space because it 
encodes color information more efficiently than the RGB space [1, 
5, 8]. The following equation is used to convert scan band pixels 
from the RGB to the YCbCr color space: 

൥ܻݎܥܾܥ൩ ൌ ൥   0.2989    0.5866    0.1145െ0.1687 െ0.3312    0.5000   0.5000 െ0.4183 െ0.0816൩ · ൥ܴܤܩ൩ ൅ ൥ 0128128൩ ,         (1) 

where R, G, B, Y, Cb, Cr are 8-bit values ranging from 0 to 255. 
The RGB values are not standardized and vary with the scanner 
model and hence the resulting YCbCr gamut is also scanner 

specific.  The Y channel is equivalent to a grayscale (luma) image, 
and the color information is encoded in the Cb and Cr channels. 
The Cb and Cr channels encode the blue and red color content 
respectively. Cb and Cr values less than 128 indicate that the color 
is more yellow and green than blue and red. The distribution of 
color in the YCbCr space is illustrated in Figure 2.  
 

Figure 2. Top: RGB scan of solid patches of Cyan, Magenta, Yellow, Red, 
Green, Blue, and Black. Bottom: Cb and Cr components of the scan pixels. 

 
The neutral axis passes through the center of the plane, i.e., where 
Cb = 128 and Cr = 128. The most chromatic pixels are labeled and 
are the farthest from the center. Equivalent to metric chroma in the 
CIE L*a*b* color space, we define colorfulness of a pixel P as the 
Euclidean distance (l2 norm) from the neutral center in the CbCr 
plane as follows:  ܥሺ݌ሻ ൌ ඥሺܾܥሺ݌ሻ െ 128ሻଶ ൅ ሺݎܥሺ݌ሻ െ 128ሻଶ ,                          (2) 

where Cb(p) is the Cb component of pixel P, and Cr(p) is the Cr 
component. A less complex alternative is the Manhattan Distance 
(l1 norm) that can be written as: ܥሺ݌ሻ ൌ ሻ݌ሺܾܥ| െ 128| ൅ ሻ݌ሺݎܥ| െ 128| .                                   (3) 

With these definitions of colorfulness, it is possible to classify a 
pixel as colorful or not given an appropriate threshold that is based 
on example scans of monochrome and color documents. The 
results in this paper are based on using Eq.(2). 

Colorfulness Threshold Model 
In order to classify a pixel as color or monochrome, we 

compute its colorfulness according to Eq.(2) and compare it to a 
threshold. A pixel is classified as color it if is more colorful than 
the threshold, and conversely, it is classified as monochrome if it is 
less colorful than the threshold. The choice of colorfulness 
threshold requires the consideration of variables such as, scanner 
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technology, media type, and expected document content. Rather 
than use trial and error in tuning the threshold, we modeled the 
cumulative colorfulness histogram of 16 color and monochrome 
test pages that are representative of the type of documents expected 
to be processed on the device. The document contents included 
images, graphics, line art, text, solid patches, and color ramps. 
Figure 3 shows the resulting cumulative colorfulness histogram. It 
is bimodal with a high peak indicating the presence of many pixels 
that are minimally colorful. The smaller peak shows the presence 
of colorful pixels that are less in number and with a wider 
colorfulness distribution.  

The optimal threshold should separate the peaks, i.e. classes, 
while minimizing the probability that a pixel is misclassified given 
its colorfulness value. This is achieved through modeling the 
cumulative colorfulness histogram using a mixture of Gaussian 
distributions P(x), as follows:   ܲሺݔሻ ൌ ∑ ௖௜ୀଵߨ ௜  ௜ሻ ,                                                      (4)ܥ|ݔሺ݌

where 0 < x < 128 is the pixel colorfulness bin center, c is the 
number of normal mixtures (2 in this case), πi is the mixing 
proportion of the Ci  mixture, and the distributions are: ݌ሺܥ|ݔ௜ሻ ൌ ଵఙ೔√ଶగ ݁ିሺ௫ିஜ೔ሻమ/ଶఙ೔మ ,                                           (5) 

where θi={μi,σi} are Ci parameters. In order to estimate the mixture 
parameters (means, variances, and mixing proportions), we use the 
Expectation-Maximization (EM) algorithm [5, 6, 7]. The iterative 
algorithm can be described as having four main steps. First, the 
parameters must be initialized with a guess based on the histogram 
shape.  

The second step is called the “E-Step”. In it, ߜ௜௫௞  is computed 
at iteration k for every histogram bin x as follows: 

௜௫௞ߜ ൌ ுሾ௫ሿ గ೔ೖ ௣൫௫หఏ೔ೖ,஼೔൯∑  గ೗ೖ ௣൫௫หఏ೗ೖ,஼೗൯೎೗సభ  , 0 ൑ ݔ ൏ ܹ ,                                   (6) 

where k is the iteration number, W is the number of bins, and H[x] 
is the cumulative colorfulness histogram data to be modeled. Note 
that ߜ௜௫௞  represents the likelihood that data from a given bin is 
extracted from a specific distribution. 

The third step is called the “M-Step”. Here, the algorithm 
computes the new mean, variance, and new proportion of each 
mixture as follows: 

௜௞ାଵߨ  ൌ ∑ ఋೈషభೣసబ ೔ೖೣ∑ ுሾ௫ሿೈషభೣసబ  ,                                                                  (7) 

௜௞ାଵߤ  ൌ ∑ ఋೈషభೣసబ ೔ೖೣ  ௫∑ ∑ ఋ೗ೖೣೈషభೣసబ೎೗సభ  ,                                                            (8) 

and 

 ሺߪ௜௞ାଵሻଶ  ൌ ∑ ఋೈషభೣసబ ೔ೖೣ  ሺ௫ିఓ೔ೖሻమ∑ ∑ ఋ೗ೖೣೈషభೣసబ೎೗సభ    .                                            (9) 

Finally, the E-step and the M-step are repeated until the 
Gaussian means and variances converge, i.e., do not change 
significantly from one iteration to the next. 

 The results of applying EM with a mixture of two 
Gaussians to the cumulative colorfulness histogram data are shown 
in Figure 3. The cumulative colorfulness histogram data is shown 
in black. The peak between 0 and 10 is the contribution of all the 
less colorful, or monochrome, pixels in the test scans. The 
distribution of more colorful pixels lies between 10 and 50.   
 

Figure 3. Gaussian Mixture model of the cumulative colorfulness histogram.  
 
A mixture of two Gaussians was chosen to model the 

histogram data since there are two classes of colorfulness of a pixel 
– colored and monochrome. Applying the EM algorithm with an 
initial guess of the distribution parameters yields the two 
Gaussians shown. The class of monochrome pixels (blue 
distribution) is centered at μ1 = 4.24, with a standard deviation of 
σ1 = 2.71 and a π1 = 0.78 mixing proportion. The class of color 
pixels (green distribution) has a mean of μ2 = 29.35, a standard 
deviation of σ2 = 18.85, and a π2 = 0.22 mixing proportion. 

Given the Gaussian mixture model, it is possible to calculate 
the probability that a pixel is monochromatic or color given its 
colorfulness following Eq.(2). For example, a pixel with 
colorfulness equal to 20 is more likely to be a color pixel than a 
monochromatic one – according to the Gaussian mixture model. 

For implementation in the scanner hardware, it is faster to 
simply use a threshold value for classification, such that a pixel is 
classified as color if its colorfulness is lager or equal to the 
threshold value and mono otherwise. The histogram model yields 
this threshold as being equal to 11.68. This is the value where the 
two distributions intersect, as indicated by the vertical dashed line 
in Figure 3.  

Algorithm Description 
The proposed algorithm for detecting a monochrome page 

within a color copy job collects pixel colorfulness information 
from scan bands (that are divided into blocks) and analyzes the 
accumulated band data after the last scan band is processed. If 
enough local colorfulness is detected, the algorithm classifies the 
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scanned page as color; otherwise, it is designated as monochrome. 
A flow diagram showing the processing stages is given in Figure 4.  

The scanner starts with the scan bar at the top of the page and 
collects scan band data as it moves down the page. In this 
experiment, the scan band pixel data is 8-bit RGB, where the scan 
band was 64 pixels high by 2560 pixels wide. The pixels are then 
converted to the 8-bit YCbCr color space using Eq.(1), and their 
colorfulness is computed according to Eq.(2). Using the 
colorfulness threshold, found via probability modeling in the 
“Color Processing” Section, the pixels are classified as either color 
or monochrome.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. A Flow diagram of the monochrome page detection algorithm. 

 
The final scan band operation is to assess the amount of color 

density in the band. This step is designed to catch cases where a 
small amount of localized color is present in the band - a colored 
letter, for example. In order to detect local color, the band is 
divided into 64 by 64 blocks and the percentage of color pixels 
within them is computed. For the scan band, it is enough to save 
the highest color concentration (or density) amongst all its blocks. 
This ensures that a scan band will flag the presence of color even if 
it is localized in only one of its blocks. After the scan band is 
processed, the algorithm analyzes the amount of maximum color 
density across all bands to classify the page as either a color or a 

monochrome page. If color is present in a band, this metric will 
peak. If the maximum color density across all bands is below a 
threshold (we used 5%), the page is classified as monochrome. On 
the other hand, if the maximum band color density has peaks rising 
above the threshold, the page is classified as color.     

Results 
Misclassifying a color page as monochrome is worse than 

misclassifying a monochrome page as color, because even small 
amounts of color printed as monochrome are obvious. On the other 
hand, it is less obvious when monochrome content is copied as 
color [3]. For this reason, the classifier must be tuned to be 
sensitive to detect small amounts of color content, while still being 
robust to isolated color pixels from color noise. The example in 
Figure 5 illustrates some of these aspects. A raw CIS scan of an 
example page is shown in Figure 5 (a), in addition to tick marks 
along the left side indicating the scan band boundaries. The page is 
mostly monochromatic, but contains some color at the top right, in 
the center, and at the bottom. These colored pixels are shown in 
black in Figure 5 (b). Note the scattered color pixels in the center 
of the page – these are due to show-trough from the back of the 
page. Ideally, the algorithm should detect the presence of the small 
and large regions of color, but be robust to the scattered color 
content contributed by show-through and color noise.  

Figure 5 (c) show a scatter plot of the Cb and Cr values of the 
test page pixels as a whole. The shown circle is centered at the 
neutral (128,128) point. The radius indicates the colorfulness 
threshold (of 11.68) that was determined through the Gaussian 
Mixture model. The pixels within the circle are deemed 
monochromatic, while the ones outside are classified are color 
pixels. There are a few color pixels that lie to the top-left (red) of 
the circle – these are from show-trough. Similarly, there are color 
pixels that lie to the bottom-right (cyan) of the threshold circle. 
These are more colorful, since they are further away from the 
neutral point, and more numerous – they are the color content.  

As the scan bar moves down the page, the algorithm classifies 
all the scan band pixels using the colorfulness threshold. Every 
scan band (64 by 2560 pixels) is divided into blocks (64 by 64 
pixels). The percentage of color pixels, i.e. color density, is 
computed for each block. If a scan band contains only scattered 
color pixels, then all the blocks will have a low color density. 
Conversely, a block will have a high color density if it contains a 
color object such as the letter “T” in this example page.  

For every scan band, only the maximum color density is 
recorded for analysis after the last scan band is processed. This 
ensures a peaking signal for a band if it contains at least one color 
object. Figure 5 (d) shows the maximum color density over all the 
test page’s bands. It also shows a threshold set to 5%, which was 
chosen by trial and error. This threshold allows the classification of 
the page as a whole as either a monochrome or color page. It can 
be seen, that the three locations of color content mentioned earlier 
(see Figure 5 (b)) produce peaks in the plot around the bands 
numbers 2, 32, and 50. Around band 24, there is a small peak that 
is only slightly larger than the threshold. The threshold can be 
easily tuned to a set of test documents, or can even be implemented 
on the MFP as a user setting to control the sensitivity of the 
monochrome page detection algorithm. 

Start with scan bar a the top 

Acquire RGB scan band pixels 

Convert from RGB to YCbCr 

Compute pixel colorfulness 

Record the maximum block 
color density found in the band 

Was this the 
last scan band? 

No 

Yes 

Threshold the maximum color 
density of all bands to classify 

the page (color/mono) 

Classify pixels (color/mono) 
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 (c) 
 

(d) 
Figure 5. (a) Raw CIS scan of a test page with scan band boundary marks (b) 
Pixels classified as colorful are set to black (c) Scatter plot of pixels on the 
CbCr plane (d) maximum block color density over scan bands. 

Conclusions 
The presented algorithm serves to detect a monochrome (or 

neutral) page in a color copy job on CIS scanners that are part of 
multi function printers. The processing starts after the first scan 
band data is obtained and the maximum concentration of colorful 
pixels in each band is recorded to classify the page as color or 
monochrome after the scan is completed. Pixel colorfulness is 
defined in the YCbCr color space, since it presents an efficient and 
popular color encoding method. The modeling of the colorfulness 
of pixels contained within a number of test documents, employing 
the Expectation Maximization algorithm on a Gaussian Mixture 
model, yielded an optimal colorfulness threshold for pixel 
classification. The results indicate that the algorithm is robust to 
scanner color noise, while still being capable of detecting small 
concentrations of color in the scanned page.  
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