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Abstract

In a single-sheet multi-layer thermal imaging system images
are formed due to the transformation of colorless crystalline
materials to colored amorphous forms, achieved by melting or
dissolution in suitable solvents. The reflection spectra of the
colored forms in printed images may vary due to the presence of
other components, such as thermal solvents, polymeric binders
required for imaging, and can cause undesirable color
combinations in printed images. Such variations may be the
results of aggregation of the colored amorphous forms, or
formation of different colored forms from the same colorless
crystals due to a change in the mechanism of reaction. Addition of
appropriate components to the imaging systems can alter the
spectra of the printed images to make them suitable for improved
image quality.

Introduction

A direct thermal system, described in Figure 1, consists of
three dye layers coated on a single sheet [1]. The color-forming
layers are separated by thermal insulating layers. Full-color
images are generated by optimizing the duration and intensity of
energy applied to each layer. Amorphochromic materials, which
are colorless in crystalline form, but are colored in amorphous
form, are used in these systems [2]. The change occurs during
thermal imaging process, as shown in Figure 2.
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Figure 1.Structure of a direct thermal printing medium
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The temperature of color formation is the temperature at
which the crystalline color former is converted to an amorphous
form, which may be through melting or dissolving in suitable
thermal solvents (TS). These thermal solvents are required to melt
in the temperature ranges optimum for the imaging of each of the
layers in which the color formers are placed. In some cases low
levels of developers (D) are included with the color formers and
thermal solvents for facilitating the color formation under the
required imaging conditions. Several amorphochromic color
formers of varying melting temperatures have been tested in
different layers of the imaging system. However, the additives
required for modulating melting temperature of an
amorphochromic material can change the spectrum of the printed
images due to aggregation of the transformed color formers, or
reaction with other components present in the imaging or adjacent
layers. Addition of various types of materials to the combinations
of color formers can decrease or eliminate such undesirable color
formation, by changing the aggregations or decreasing the
reactions leading to undesirable colors. A few examples of such
combinations are described in this paper.

Experiments

The general structures of cyan, magenta and yellow color
formers used in these experiments are shown in Figures 3A, 3B
and 3C, respectively. The types and positions of the substituents
were selected for achieving the required chromophores and
melting temperatures of the color formers. The thermal solvents
used for modulating melting temperatures of the color formers
were substituted aromatic ethers, as shown in Figure 4. The
developers used were substituted phenols or non-phenolic
substituted sulfonylureas.
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Figure 3A. General structure of cyan amorphochromic color-formers
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Ry, Ry, Ry, Ry, Rs=H, alkyl or F
Figure 3B. General structure of magenta amorphochromic color-formers

Ry, Ry, R3= H, alkyl or aryl
Figure 3C. General structure of yellow amorphochromic color-formers
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Figure 4. General structure of thermal solvents

Each of the color formers and their combinations with
additives was tested individually as monochromes. The color
formers, thermal solvents and developers were dispersed in water
using non-ionic surfactants. Coating fluids were prepared by
mixing required amounts of the dispersions with a polymeric
binder. Fluid for thermally-resistant topcoats contained a meltable
lubricant and colloidal silica with polyvinyl alcohol as the binder.
The fluids were coated on an opaque substrate, such as a voided,
biaxially-oriented polypropylene, using Meyer rods. The coatings
were imaged by using a standard type thermal printhead for
monochrome prints such as one manufactured by Toshiba, model
no. F3788A, 1890 ohms. The reflection spectra of the prints were
recorded using a Gretag SPMS50 densitometer. The conditions for
the measurements were: illumination = D50, observer angle = 2°,
density standard = ANSI A, reflection standard = white base, and
no filter. The reflection spectra of the printed images were
recorded where the reflection density of the corresponding color
was close to 1. For proper comparison each spectra was
normalized at lambda max.

Results and Discussion

Figure 5 shows reflection spectra, normalized at lambda max,
of a cyan color former C, without any additive, suitable for the top
layer of the imaging system, and in presence of additives for the
middle and bottom layers. The results indicate significant spectral
shift in presence of the additives TS-2 and D-2 for bottom layer,
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compared to the effects of the additives TS-1 and D-1, present in
the combination suitable for middle layer. The spectra of the
middle-layer combination and the color former without any
additive are similar to each other, but the bottom-layer additives
appear to cause a large spectral shift. This difference may be due
to formation greater extent of aggregates during printing of the
system for bottom layer.
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Figure 5. Effects of additives on normalized reflection spectrum of image from
a cyan color former.

The observed spectral shift of the printed bottom layer
combination can have an undesirable effect on the image quality.
If the spectral shift is due to aggregation of dye molecules
generated from the conversion of the color former, additives that
are not involved in direct transformation may disrupt aggregation
and reduce spectral shift. In order to test this hypothesis, various
quaternary ammonium compounds were added to the combination
of color former and additives for bottom layer. An example of the
effect of a quaternary compound on the reflection spectrum of the
color former C with additives for bottom layer is shown in Figure
6. In the presence of the quaternary compound the reflection
spectrum of the print containing additives for the bottom layer is
much closer to that of the color former without any additive.
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Figure 6. Effects of a quaternary ammonium compound on normalized
reflection spectrum of image from a cyan color former and additives.
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The presence of additives and quaternary compounds can also
alter the color generated from a color former to a more acceptable
form, when needed. Figure 7 shows the reflection spectrum of a
magenta color former M without any additives. The spectrum
extends to the red region, rendering the printed color to be less
acceptable for achieving optimum image quality. The same color
former when combined with an organic ether as a thermal solvent,
a substituted sulfonylurea as a developer and a quaternary
ammonium compound the absorption in both red and blue regions
decrease, a narrower spectrum is obtained in the green region and
consequently a better image quality.

density

0.2 4

0.0

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700
nm

-O- Color former M, without additive

—¢- Color former M + additives for middle layer + quaternary ammonium salt

Figure 7. Effects of additives on normalized reflection spectrum of image from
a magenta color former.

The yellow color former Y, suitable for the top layer can be
imaged without the presence of any thermal solvent. Because of
the molecular structure of the color former, the presence of acidic
or basic components can change its spectrum. Figure 8 shows the
spectrum of a printed image in neutral environment. The spectrum
shows a secondary peak and significantly high absorption in green
region, which is not desirable for optimum image quality.
Addition of organic acids, such as phenols or substituted
anthranilic acids to the imaging system has been effective in
decreasing the absorption in the green region and improving image
quality.
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Figure 8. Effects of additive on normalized reflection spectrum of image from
a yellow color former.
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Conclusions

Thermal imaging of amorphochromic crystals is achieved by
melting or dissolution of colorless crystals to colored amorphous
form. Aggregation of the colored form or other reactions
associated with such transformation can alter reflection spectra of
the printed images and consequent less than optimum image
quality. Such spectral shifts can be altered by the addition of
materials suitable for the imaging layer.
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