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Abstract 
For a dual-line 1200dpi thick film thermal printhead, the 

rendered dots are of elliptic shape, with aspect ratio of 1:1.5, due to the 
constraint of a smaller pitch in 1200dpi and the minimum nib line 
width required during nib line formation.  This is one area for image 
quality improvement.  Characteristics of conventional single-layer nib 
lines of different line width are studied.  Based on the experimental 
result, a new formation approach of two-layer nib line structure is 
studied and tested to achieve the goal of producing an ideal round dot 
shape with aspect ratio of 1:1. 
 
Introduction 

The thermal printing technology is based on the principle of 
transferring heat from a high-resistance nib line to the thermal-
sensitive media being contacted, and has the advantages of fast 
throughput and ease of maintenance.  Utilizing this technology, the 
dual-line wide-format 1200dpi thick film thermal head has been 
developed[1] and may be used for high-end applications where 
halftone dots as high as 133 lpi can be rendered.  However, the 
practical upper bound for consistent printing may be 120 lpi when 
the real characteristics such as mechanical tolerance, dot shape, 
etc, are taken into consideration. The most restrictive factor is the 
dot shape formed via transferring heat to the thermal-sensitive 
media.  The elongated (in the media-feeding direction) oval dot 
shape may affect the gradation expression, rendering a less than 
desirable image quality. The adoption of different structures of 
heater elements has always been a research topic in quality 
improvement of thick film thermal printing systems[2, 3]. 

The circuitry of our 1200dpi thermal printhead makes use of 
an alternated conductive lead system. A heater nib line is formed 
by a direct dispensing system on top of the conductor pattern in 
alternated paths, and generates the Ohmic heat as the result of 
current flowing due to the voltage difference between conductors.  
After the heat is transferred to the thermal sensitive media, the 
image is rendered.  Although a nib line width of 80μm can be 
formed stably, for consideration in real production 100-110μm 
width is adopted for a 1200dpi head.  At this design choice, the 
aspect ratio of the dots formed is about 1:1.5 (the printhead- versus 
the feed-direction).  In high-end graphic art applications, however, 
the aim is to produce an aspect ratio as close to 1:1 as possible. 

Study of nib lines of different width 
Using the current technology the affect of different width of 

nib line is studied based on the experimental result.  By making 
the width of heater nib line narrower, with a fixed pitch between 
nibs, the aspect ratio may get closer to 1:1 and an ideal round dot 
shape be obtained. 

However, there are two issues requiring careful consideration. 
One is the heater resistance paste material which has variations in 

the distributed state and the component particles (RuO2, glass)[4].  
The other is the formation of thick film heater nib line.  To 
develop a 1200dpi printhead, a micro dispenser was developed to 
draw a high-resolution nib line[1].  The dispenser has the non-
contact surface-following capability by means of back pressure 
sensing and,  with a small nozzle (capillary of wire bonding), 
discharges the paste of thick film resistor material to form a nib 
line.   However, variation does exist due to the state of paste and 
the specification of direct dispensing system.  The narrower the 
drawn nib line is, the larger the affect of these variations becomes. 

Note that on the dual-line 1200dpi thermal printhead the 
resolution of a single heater nib line is 600dpi.  Shown in Figure 1 
is the composite figure of a typical thick film thermal heater nib. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 A composite figure of a thick film thermal heater nib 

In our first study, three nib lines were drawn for use as test 
samples as listed in Table 1.  Note that Gap (L) = Pitch (P) - width 
of conductor = 42.3 - 20 = 22.3μm, and that the differences in 
thickness (t, max height of nib line) are due to the viscosity of 
paste or its wet characteristics against the substrate. 

Table 1   Three cases of heater nib line under study 
Test 

sample 
Width, W (μm) Thickness 

t (μm) 
Gap 

L (μm) 
Pitch 

P (μm) Target Actual 
Narrow 80 74 5 22.3 42.3 
Middle 120 115 9 22.3 42.3 
Wide 160 154 10 22.3 42.3 
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With these test samples, the following were evaluated: 
• Variations in nib line width and resistance 
• Electrical power-proof characteristics (Step Stress Test, SST) 
• Print characteristics 

Variations in line width and resistance 
Listed in Table 2 are the measurements of nib line width and 

the corresponding 3-sigma variations and max deviations, defined 
as (max-min)/averaged width.  The 3-sigma variations in 
resistance before adjustment are also listed.  The zoomed top view 
after nib line formation is shown in Figure 2. 

Table 2   Measurement and variation of line width and resistance 
Test samples Actual data 
Target width 

(μm) 
Width 
(μm) 

Width 3σ 
variation 

Max 
deviation 

Resistance 
variation 

Narrow 80 74 6.8% 7.0% 33.4% 
Middle 120 115 3.6% 3.6% 21.4% 
Wide 160 154 3.7% 3.4% 18.4% 

 
 
 
 
 
 
 
Figure 2  Zoomed top view of heater nib lines after formation 

The magnitude of the surge on the base substrate is about the 
same in all three test samples, thus the influence in percentage is 
most profound in the case of narrow nib line.  A thick film thermal 
head, after the nib line is formed, requires the procedure of 
adjusting resistance by means of electrical pulse trimming[5].  It is 
possible to trim the middle and the wide heater nib lines due to 
their moderate variations in resistance value.  However, it is 
extremely difficult for the narrow nib line. 

Electrical power-proof characteristics (SST) 
 The SST (Step Stress Test) is performed to evaluate the 
consistence of the nib line resistance under extreme working 
condition after the protective layer has been formed.  The test is to 
apply a cyclic pulse sequence of a fixed power, with the cyclic 
period of 3 msec and power-on pulse width of 0.8 msec.  The test 
power setting starts from 0.1 W and goes up in the increment of 
0.01W.  The averaged resistance is measured at each power setting.  
The percentage changes in resistance for all the three nib lines are 
shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
Figure 3 The SST characteristics of heater nib lines of different width 

Print characteristics (dot shape) 
Printing conditions: 

• Medium: XP film (transparent thermal film made by Agfa) 
• Applied time (power-on pulse width): 0.8 msec 
• Single dot printing 
The medium was fixed intentionally, while printing by applying a 
single pulse, to remove the factor of media movement.  The print 
samples are shown in Figure 4.  In the case of narrow nib line, a 
near-round (aspect ratio of 1:1.2) dot shape is acquired.  The 
middle nib line, though more stable, produces an elongated dot 
shape with an aspect ratio of 1:1.7. 
 
 
 
 
 
 
 
Figure 4 Printed single dot in test cases of different nib line width 

By varying the applied power, different dot sizes can be 
obtained.  Shown in Figure 5 is the relationship of dot width (X-
diameter, in the nib line direction) versus the applied power for 
each nib line tested. 
 
 
 
 
 
 
 
 
 
                                                                                                                    
Figure 5 The relationship of dot width versus applied power 

The optimal applied power for X-diameter=35μm (a proper 
dot width for 1200 dpi printing applications) and the maximum 
power causing a 10% increase in resistance in SST are listed in 
Table 3.  Also listed is the percentage margin showing how far the 
optimal applied power is from the SST @ 10% resistance increase. 

Table 3 The power-proof characteristics and proper printing   
conditions for nib lines of different line width 

  Narrow Middle Wide 
SST @+10% in R 0.204w 0.288w 0.384w 
X-diameter=35μm 0.155w 0.18w 0.225w 
Margin 24% 38% 41% 

Analysis and preliminary conclusion 
Three-dimensional thermal conduction analysis using finite 

element method[6] can be performed on a thick film thermal head 
with the structure shown in Figure 1.  A simplified conceptual 
analysis, however, may as well provide some illustrative insight 
about the relationship between the geometrical configurations of 
the nib line and of the dot shape, and is briefly summarized here. 

When the printhead circuitry is activated, the current flows 
from the high-voltage conductor to the low-voltage one along the 
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nib line direction (X-axis).  For a fixed voltage difference, the 
Ohmic heating rate is proportional to the effective electrical 
conductance between two conductors.  Along the current path in 
X-axis direction, the effective conductance at any Y-axis position, 
of a tiny width Δy, is proportional to the cross-section area and 
hence the nib line height at that y position.  Therefore the Ohmic 
heating rate at y=0 is maximal.  Also due to the thinning at both 
flanking edges of the nib line, the typical distribution pattern of 
heat generating on the X-Y plane surface is like a dome[6]. 

The surface contour of the nib element in the Y-Z plane, 
Figure 1, can be approximated by an elliptic function z=-ay2+t.  
The effective electrical conductance and the Ohmic heating rate 
are approximately proportional to the height of the nib line, and 
are maximal at y=0.  The normalized heat generation rate (with 
100% at y=0) along the conductor direction (Y-axis) for the three 
cases of different nib line width can be plotted in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6 The normalized heat generation rate with the center set to 100% 

The relationship of print characteristic versus the width of the 
heater nib line can be summarized below: 
• The aspect ratio of dot shape is better (closer to a round 

shape) for a narrower heater nib line, but there may be 
problems in durability, width/resistance variations, etc.  These 
drawbacks may be less obvious for a wider nib line, with 
100μm width as the marginal value. 

• The aspect ratio of dot shape can be approximated 
empirically by a function of the width and the thickness of a 
heater nib line.  With the same line width, the aspect ratio of 
dot shape becomes smaller if the thickness of the nib line is 
larger. 

• The SST and print characteristic also depend on the volume 
(~ width x thickness) of the nib element. 

• For the single layer structure, it seems 78% of the full heat 
generation rate is what it takes to make a visible reaction on 
the printed media in forming the dot shape. 

Proposed Improvement – two-layer structure 
Note that the aspect ratio of dot shape is influenced by the 

form of heater nib line as mentioned above.  When the width of a 
heater nib line is narrow (~74μm), the dot shape is almost close to 
an ideal (round) one, but it suffers from inconsistent durability, 
width/resistance variations, etc.  The proposed approach is to look 
for an improvement method to form a better dot shape as in narrow 
nib line, but still keeps the same consistence as in wide nib line in 
addition to utilizing the current material and equipment.  It is 
observed that the printing becomes invisible beyond the position in 
the conductor direction (Y-axis) where the thickness of nib line is 
lower than a cut-off value (~78%).  This has motivated us towards 

the adoption of two-layer structure, which is practically feasible 
because the direct dispensing system can draw a nib line at a 
desirable width down to 80μm on glazed substrate.  

The proposed 2-layer structure nib line to make an aspect 
ratio of 1:1 is based on the following considerations: 
• By using a wider base layer, the advantages of durability and 

minimal resistance variation can still be kept. 
• The base layer, however, should be thinner so that the dot 

shape won’t be elongated in the conductor direction. 
• To make up the thickness so that more heating rate and the 

visible dot shape can be produced, a top layer is added to 
have a more concentrated heat generation rate. 

What we would like to have is a dot shape generated similar to or 
better than that by the middle width (115μm) and still keeping the 
advantages as in the wide nib line (150μm).  The 2-layer structure 
proposed is shown in Figure 7 where two elliptic functions, -
aBy2+tB and -aTy2+tT, representing the surface contours of the 
bottom layer and the top layer, are plotted.  The intersection point 
denotes the desirable dot length, 56μm (from y=-28μm to +28μm), 
in the conductor direction. Therefore, the top layer would have a 
fictitious base width of 74μm and max thickness of 10μm and the 
bottom layer is of width 150μm and a thickness of 5μm. 
 

 
 
 
 
 
 
 

 

                                                                                                                        
Figure 7 Graphic representation of surface contour of two-layer structure 

A test sample and evaluation of two-layer structure 
The heater nib line of the 2-layer structure is formed as shown 

in Figure 7 and the formation procedure is as follows.  First, the 
bottom layer of 150μm in width and 5μm in thickness is formed 
utilizing a direct dispenser and gets dried.  Then the top layer of 
50-60μm in width and 5μm in thickness is added, also using a 
direct dispenser, and gets dried.  Finally the thermal head is heated 
at high temperature.  Since the bottom layer after dryness tends to 
absorb heater resistance material (paste), the width of top layer 
does not spread, easing the formation of a narrower nib line.  The 
enlargement of the upper surface after two-layer formation is 
shown in Figure 8.  
 
 
 
 
 
 
 
 
Figure 8 Enlargement of the upper surface of the two-layer heater nib line 
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The physical dimensions after final formation are: top/bottom 
layer width: 50μm/170μm, total thickness (max height at the center 
line): 11μm.  The height at the intersection point of the top and 
bottom layers is about 4μm.  The top layer is formed uniformly on 
top of and within the boundary of the bottom layer.  The nib line 
formed this way is then used for evaluation.  Listed in Table 4 is 
the comparison of nib line characteristics for different test cases. 

Table 4 Nib line characteristics comparison 
  Narrow Middle Wide 2-layer 
Resistance variation 33.4% 21.4% 18.4% 18.2% 
SST @+10% in R 0.204w 0.288w 0.384w 0.328w 
X-diameter=35μm 0.155w 0.18w 0.225w 0.188w 
Margin 24% 38% 41% 43% 

The resistance variation of 2-layer structure is about the same 
as Wide line width in single-layer structure.  The influence of the 
surge of the top layer is also small.  In addition, further trimming 
can reduce the variation in resistance to less than 2%.[5] 

Among the SST curves for different nib line structures, the 
two-layer structure ranks between the Middle and Wide nib lines. 

The applied energy for which a 35μm X-diameter (i.e., dot 
width) of printing can be obtained is almost the same as Middle 
nib line.  When the margin is calculated from the result of SST and 
the print characteristics (at X-diameter=35μm), the two-layer 
structure is the best among all the test cases. 

 
 
 
 
 
 
 
 
 

Figure 9 Enlargement of single dot shape printed using 2-layer structure 

The enlargement of single dot shape obtained by printing 
without moving the media is shown in Figure 9, with Narrow nib 
line of single-layer structure also displayed for comparison. 

Other observations and preliminary conclusion 
To verify the state of thermal storage, the thermal transient 

characteristic is measured using a micro surface thermometer.  The 
measured curves of 2-layer structure and Middle width are shown 
in Figure 10, with both exhibiting similar characteristics. 

 
 
 

 
 
 
 
 
 
 
 
Figure 10 Thermal transient characteristics (measured in the sensing Φ20μm 
area of heater nib central part) Ton=0.8 msec, W=0.18 w 

The close resemblance of thermal transience between the 2-
layer test sample and the Middle line width (115μm, with 
thickness of 9μm) of single-layer structure coincides with the 
observation that the optimal applied energies (for 35μm dot-width 
printing) are about the same for these two test cases. 

Note that in the case of single-layer structure the nib line (like 
the bottom layer in 2-layer structure) is drawn on a glazed 
substrate, there is a spread of width due to the material 
characteristics of heater resistance paste.  For 2-layer structure, in 
contrast, after the bottom layer has been dried, the top layer line is 
formed on top of it and shrinks about 30%. 

The test result does confirm the design idea that, by using the 
2-layer structure, a dot shape similar to or better than that by the 
Middle width of single-layer structure may be generated while the 
advantages of durability, consistence in resistance, etc., as in the 
Wide nib line, are still preserved. 

Summary and future direction 
 For single-layer structure, experiments have been performed 
on nib lines of different width.  While a narrow nib line may 
generate an ideal round dot shape, a wide nib line has the more 
desirable characteristics, such as durability, small resistance 
variation, etc., required for production 

A 2-layer structure composed of a wide bottom layer and a 
narrow top layer seems to be a promising solution.  A test sample 
is made and exhibits a round dot shape and the desirable 
characteristics for production.  However, the adjustment method of 
resistance in forming a 2-layer structure during production is 
different from the current single-layer formation.  To establish a 
more efficient procedure for resistance adjustment is an R&D topic 
being pursued. 
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