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Abstract 
This paper presents results of improved tone prediction 

accuracy in calibration through a principal component analysis 
based regression approach for color electrophotography (EP).  
During calibration, multiple color patches of the same primary 
color at different halftone levels are printed on a belt with black 
exterior and are measured using on-board sensors.  Regression 
models are often developed to predict the primary color tone 
values on output media from these on-board sensor measurements.  
The prediction accuracy of the regression models directly impact 
the quality and consistency of the calibration.  Analyses have 
revealed a high degree of correlation among the color patch 
measurements, which results in using multicollinear measurements 
as explanatory variables during regression analysis to identify 
model coefficients.  It is well known that using collinear 
explanatory variables during regression analysis will result in sub-
optimal model coefficients that will degrade the prediction 
accuracy.  In this study, a principle component regression (PCR) 
approach is applied to tackle the potential issue with collinear 
measurement data in model coefficient estimation.  The 
experimental results show the resulting PCR models provides 25% 
improvement on average in root-mean-squared predication 
accuracy over separate ordinary least square regression models. 

Introduction 
A color electrophotographic (EP) printing system typically 

uses four primary colors – cyan, magenta, yellow, and black.  
Calibrations are performed to maintain consistent color 
reproduction under different operating conditions.  During a 
calibration, multiple patches of different halftone levels of the 
same primary color are printed on an intermediate media and are 
measured with on-board sensors.  Calibration models are used to 
predict the primary color tone values on output media from these 
on-board sensor measurements.  In this study, our aim is to 
improve the prediction accuracy of the calibration models through 
a principal component regression (PCR) approach for color EP 
systems. 

The calibration models are developed with life test data.  In 
typical life test, additional color patches are printed on output 
media immediately following calibration.  Their tone values, 
output tone values, are measured off-line with measurement 
devices, such as photometers.  Calibration models are developed to 
map the on-board sensor measurements to the output tone values 
[1].  During calibration, output tone values are predicted based on 
the on-board sensor measurements using the calibration model.  
Appropriate tone correction is performed to regulate the color 
reproduction. 

Halftoned color images composed of arrays of closely spaced 
micro-dots. Changes in operating conditions or different EP 
parameter settings will impact the sizes of the micro-dots.  
Assuming operating conditions and EP parameter settings have 
consistent impacts on the sizes of the micro-dots for a given print, 
the effects of micro-dot size fluctuation can be detected by the on-
board sensor from different halftone patches of the same color. 
This results in increased correlation among the on-board sensor 
measurements, i.e., multicollinearities.  It is well known that using 
the collinear measurements as explanatory variables to identify 
model coefficients directly through ordinary least-square 
regression (OLSR) will result in sub-optimal model coefficients 
that will degrade prediction accuracy [2].  Hence, existing 
calibration models are developed using a single-response 
regression approach, i.e., the output tone value at a particular 
halftone level is regressed only with the on-board sensor 
measurement at the same halftone level. 

Recent researches in regression analysis have shown 
improved prediction accuracy of regression models using multiple 
explanatory variables as compared to single-response regression 
models [3, 4].  To address the multicollinearities associated with 
multiple on-board sensor measurements, in this study, a principal 
component regression (PCR) approach is proposed [5].  PCR 
avoids the numerical issues associated with the OLSR by 
transforming multicollinear sensor measurements into a set of 
orthogonal principal components (PC) basis.  In addition, it 
achieves biased regression by determining an optimal subset of 
PC’s to be retained while discarding PC’s that are less statistically 
significant.  To illustrate the utility of the proposed approach, a 
first-order linear calibration model for an off-the-shelf in-line color 
EP printer is developed using existing life test data. Cross-
validation results demonstrate 25% improvement in prediction 
accuracy compared with the existing calibration model. 

Method 

Calibration Model 
Since each primary color is reproduced independently for a 

single-pass color EP process, a calibration model is developed for 
each primary color.  A calibration model can be written as 
y = f(z,d), where y is tone values on paper, z is on-board sensor 
measurements, and d is uncontrollable but measurable 
factors/disturbances, such as temperature and humidity.  The tone 
values, y, are the measured intensities of the reproduced color 
patches printed at designated halftone levels.  In this study, a tone 
value is defined as the Euclidian distance (ΔE) in CIE L*a*b* 
space between the color point of a primary color printed at a 
particular halftone level and the substrate appearance color.  A 
static linear calibration model is used in this study. 
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Problem Formulation 
Life test data are used to identify the calibration models.  For 

one observation, a set of on-board sensor measurements, 
measurable disturbances, and the corresponding tone values 
measured on paper are collected.  Denote zij ∈ℜ as the jth on-board 
sensor measurement in the ith observation, yij ∈ℜ as the jth tone 
value measurement in the ith observation, and dij ∈ℜ  as the jth 
measurable disturbances in the ith observation.  Denote G as the 
calibration model.  The calibration model, G, is a linear 
transformation relating the tone value measurements, y, to the 
sensor measurements, z, and the disturbances, d. 

Consider p on-board sensor measurements, q measurable 
disturbances, and w tone value measurements are made in one 
observation, and n observations are made in the life test.  
Denote Z = [zij ]∈ℜn×p  as the sensor measurement matrix and  
D = [dij ]∈ℜn×q as the measurable disturbance matrix.  Let X∈ℜn×r 
denote the explanatory variable matrix, which is the augmented 
matrix consisting of matrices Z and D, i.e., X = [Z|D] and 
r = p + q.  Denote Y = [ yij ]∈ℜn×was the response variable matrix 
containing the tone value measurements.  Denote G∈ℜr×w as the 
calibration model that can be written as Y = XG.  Note that the 
matrices are assumed to be centered column-wise.  Hence no 
constant or intercept term is required in the regression model 
development. 

Ordinary Least Square Regression 
Consider a standard multivariate regression model: 

Y=XG+E , 
 
where the error matrix, E, satisfies the usual assumption of being 
independent and identically-distributed.  The number of 
observations is usually larger than the number of calibration color 
patches printed in a calibration, i.e., n >> r.  The OLSR solution to 
the over-determined problem stated above is to minimizes the loss 
function, i.e., 

[ ]
2

2arg min arg min |
⎡ ⎤

= − = − ⎢ ⎥
⎣ ⎦

Z

D

GG Y XG Y Z D
G

, (1) 

where the calibration model, G, can be split into two matrices GZ 
and GD with proper dimensions corresponding to the sensor 
measurement matrix, Z, and the measurable disturbance matrix, D, 
respectively.  The OLSR solution to Eq. (1) is given by 

G=(XT X)-1 XTY. (2) 
 
The explanatory variable matrix, X, is not of full rank since 

the column vectors are collinear.  The calculation of the matrix 
(XT X)-1 is computational challenging especially with matrices that 
with lower conditioning number.  This yields larger variance in 
model coefficient estimation.   

Variance Inflation Factor 
Variance inflation factor [6] (VIF) is commonly used to 

detect multicollinearity among explanatory variables.  It is defined 
as 

(VIF)j = 
1

1 - R2
j
 , (3) 

where R2
j  stands for the unadjusted coefficient of determination of 

the jth explanatory variable when it is predicted by the other 
explanatory variables included in the model.  Suppose the jth 
explanatory variable is linearly correlated to any the other 
explanatory in the model, R2

j  is large and, consequently, the VIF 
value is large.  Values of VIF that exceed 10 are often regarded as 
indicating strong multicollinearity [7] among the explanatory 
variables and OLSR may not be a good regression approach.  

Principal Component Regression 
The key idea of PCR is to linearly transform the 

multicollinear sensor measurement matrix, Z, to a principle 
component (PC) matrix that consists of a set of orthogonal vectors.  
The model coefficient estimation can be directly carried out 
following Eq. (2).  A singular value decomposition (SVD) on the 
sensor measurement matrix, Z, is performed as the first step to 
calculate the PC matrix, i.e., 

Z=UΣV T=∑
i=1

p

σiuivi 
T, 

where Σ = diag(σ1,  σ2, …, σp) ∈ℜn×p is a diagonal matrix of 
singular values σi associated with the principal component PCi, 
and U∈ℜn×n and V∈ℜp×p are left and right unitary matrices of 
corresponding singular vectors, ui and vi , respectively.  The PC 
matrix, Ψ∈ℜn×p, can be obtained by multiplying the sensor 
measurement matrix, Z, with the right unitary matrix, V, i.e., Ψ = 
ZV.  The principal component PCi is a linear combination of the 
raw sensor measurements with the coefficients in the associated 
row vector, vi. 

Next, the PC matrix is augmented with the disturbance matrix 
as the explanatory variable matrix, i.e., X = [Ψ |D], in the 
subsequent multivariate regression.  The loss function is 

[ ]
2

arg min |
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

Ψ

D

ΓΓ Y Ψ D
Γ

, (4) 

where Γ∈ℜr×w is the coefficient matrix to be determined.  The 
coefficient matrix, Γ, can be split into two matrices ΓZ and ΓD with 
proper dimensions corresponding to the PC matrix, Ψ, and the 
disturbance measurement matrix, D, respectively.  Since the PC 
matrix, Ψ, is of full rank, the solution of the coefficient matrix, Γ, 
in Eq. (4) can be carried out directly following Eq. (2).  Matching 
the response variable matrix, Y, in Eq. (1) and (4), one can obtain 

T= + = +Ψ D Z DY ΨV VΓ DΓ ZG DG . (5) 
 
Therefore the calibration model is 

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Z Ψ

D D

G VΓG
G Γ

. 

Biased Principal Component Regression 
The noise in the sensor measurements can result in bias in 

regression analysis and, consequently, can increase the uncertainty 
in model coefficient estimation.  Biased PCR excludes the PC’s 
regarded as noise from being used in the regression.  Assume the 
noise in the sensor measurement matrix, Z, is additive.  It can be 
decomposed into two matrices – an exact signal matrix S, and a 
noise perturbation matrix N – so that 
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where ΣS, US, and VS , and ΣN, UN, and VN are the singular value 
matrix, left matrix, and right matrix associated with the SVD of the 
signal matrix, S, and the noise perturbation matrix, N, respectively.  
If PCi is regarded as noise, the corresponding singular value, σi, 
left singular vector, ui, and right singular vectors, vi, are put to the 
noise perturbation matrix, N.  Then the biased PC matrix, ΨS = 
ZVS, is used in the subsequent regression. 

Principal Component Selection 
A forward selection algorithm is used to determine the PC’s 

to be included in the regression.  This study utilizes forward 
selection proposed by Xie and Kalivas [8].  The forward selection 
tries out the PC’s one by one and includes one PC in the model if 
it is statistically significant to the response variables.  Bayesian 
information criterion (BIC) [6]  

ln ln( )RSSn k n
n

⎛ ⎞⋅ + ⋅⎜ ⎟
⎝ ⎠

, (6) 

is used as the selection criterion, where RSS is residual sum of 
squares from the estimated model and k is number of the PC’s to 
be included in the forward selection.  BIC is known to be more 
parsimonious compared to other information criterion.  Hence the 
chance of over-fitting can be reduced with using BIC as the 
selection criterion.  The PC selection procedure can be 
summarized in the following four steps: 
 
Step 1: Compute all the PC’s through SVD. 
Step 2: Determine the first PC producing the minimum selection 

criterion following Eq. (6).  Call this the first PC subset. 
Step 3: Identify the second PC subset as the subset of PC’s 

providing the minimum selection criterion from all 
possible combinations containing the first PC subset and 
one more PC that has not been included in the first PC 
subset.  Compute the selection criterion of the second PC 
subset following Eq. (6). 

Step 4: The process stops when the selection criterion of the 
second subset is larger than that of the first subset or when 
all PC’s are included in the regression. Otherwise, let the 
second subset be the first subset and continue from step 3. 

 
Preferably, the PC selection can be performed for an 

individual response variable to preserve the freedom of PC 
retention.  Then the individual response variable is regressed with 
the selected PC’s.  The calibration model is the integration of the 
coefficients from the regression analyses.  The signal matrix 
consisting of selected PC’s for the mth response variable can be 
expressed as 

S 
(m)

 = U 
(m)
S  Σ 

(m)
S (V 

(m)
S )T. (7) 

The biased PC matrix of the mth response variable, Ψ 
(m)
S , can 

be obtained by multiplying the sensor measurements matrix, Z, 
with the right unitary matrix, V (m)

S  from Eq. (7), i.e., Ψ 
(m)
S  =ZV 

(m)
S .  

Let y(m)∈ℜn denotes the mth column vector in the response variable 
matrix, Y.  The loss function to be minimized for the mth response 
variable is 

2( )
( ) ( ) ( )

( )arg min |
m

m m m S
S m

D

⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎣ ⎦

⎣ ⎦

γγ y Ψ D
γ

, (8) 

where γ(m)∈ℜr is the coefficient vector corresponding to y(m) to be 
determined in the regression.  The coefficient vector, γ(m), can be 
split into two vectors, γ 

(m)
S and γ 

(m)
D , with proper dimensions 

corresponding to the biased PC matrix, Ψ 
(m)
S , and the disturbance 

measurement matrix, D, respectively.  The calibration model can 
be obtained by combining the product vectors of multiplication of 
the coefficient vectors, γ 

(m)
S , from Eq. (8) and the associated right 

unitary matrix, V 
(m)
S , from Eq. (7) with the coefficient vectors, γ 

(m)
D , 

i.e., 
(1) (1) ( ) ( )

(1) ( )
[ | | ]

[ | | ]

w w
S S S S

w
D D

⎡ ⎤
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⎣ ⎦

V γ V γG
γ γ

L

L
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Experiment 
The proposed PCR procedure is performed on an off-the-shelf 

one-pass color EP printer.  The printer prints and measures nine 
calibration patches at different halftone levels for each primary 
color during a calibration, i.e., p=9.  These halftone levels are 
labeled as HLj, j=1…9, from light to dark.  Calibration patches 
identical to those printed in calibration are printed on output media 
for each primary color immediately following a calibration.  Their 
tone value measurements are made with spectrophotometers (X-
Rite® DTP-70).  A commercial white paper (Xerox®) is used as 
the output media. 

The experiment is performed on twenty printers with several 
consumable sets across a wide range of environmental conditions.  
The temperature ranges from 15 to 30°C, and the relative humidity 
ranges from 10 to 80%.  Totally more than four hundred 
observations, i.e., n > 400, are made.  The models are identified 
following the proposed PCR procedure using Matlab®.  Humidity 
ratio is chosen to be the measurable disturbance. 

VIF of the Sensor Measurements 
Table 1 lists the variance inflation factor (VIF) of the 

experimental sensor measurements based on Eq. (3).  The VIF 
values indicate a high degree of multicollinearity among the sensor 
measurements, especially for those sensor measurements of the 
color patches printed with halftone levels in the mid-tone and 
shadow range.  Particularly, the VIF value can be as large as fifty 
for yellow.  The large VIF values demonstrate the necessity to 
conduct the model development through the PCR. 

TABLE I: Variance inflation factor values of the sensor 
measurements at each halftone level (HL) 

 Cyan Magenta Yellow Black 
HL1 1.3 1.2 1.3 1.3 
HL2 3.9 2.6 4.6 2.2 
HL3 7.4 5.3 7.6 4.7 
HL4 8.8 7.2 22.5 8.6 
HL5 11.6 13.8 26.3 10.7 
HL6 17.9 14.6 27.0 14.9 
HL7 19.9 16.4 53.0 23.7 
HL8 18.9 16.2 31.9 15.8 
HL9 11.2 7.6 14.1 12.9 
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Model Comparison 
PCR models are developed through the proposed methods and 

are compared with separate OLSR models in which a tone value is 
regressed with single sensor measurement and the humidity ratio at 
each halftone level.  A statistical F-test is conducted to compare 
the two types of models.  The results show the PCR models are 
significantly better than the OLSR models at all halftone levels for 
all colors at 99% confidence level. 

A 10-fold cross-validation (CV) without replacement is 
performed with the experimental data (see Fig. 1).  Overall the 
PCR models provide 25% improvement on average over the OLSR 
models. 

Conclusion 
A PCR method to improve tone prediction accuracy of 

calibration models for color EP systems is proposed in this work.  
A high degree of multicollinearity among calibration color patch 
measurements is verified through experiments and statistical 
analyses.  This motivates using PCR for calibration model 
identification.  The proposed method includes a forward selection 
algorithm to determine the optimal subset of PC’s to be retained in 
biased PCR.  The effectiveness of the proposed PCR method is 
verified with experimental data collected under different 
environmental conditions and consumable usage levels.  Statistical 
tests demonstrate the proposed PCR models outperform separate 
OLSR models.  The PCR models provide 25% improvement on 
average in root-mean-squared predication accuracy over OLSR 
models based on cross-validation. 
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Figure 1. Cross-validation root-mean-squared errors (CVRMSE) of the ordinary least square regression (OLSR) models and the principal component regression 
(PCR) models at each halftone level (HL). 
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