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Abstract 
This proceeding describes the development of two apparatus 

used to characterise ink-jet fluids. In term of Linear Viscoelasticity 
(LVE), the recently developed Piezo Axial Vibrator (PAV) was 
used to characterize the high frequency response of model ink-jet 
fluids. Two series of model ink-jet fluids were investigated. The 
first series was a mixture of diethyl phthalate and mono-disperse 
poly(styrene) and the second series examined the influence of 
dispersant and pigment on a commercial UV carrier fluid 
(varnish). Both the polymer and pigment loaded fluids showed a 
development of LVE with increasing concentration. A filament 
stretching apparatus, called the “Cambridge Trimaster” was used 
to characterize the fluids high speed stretching and break-up 
behaviour. Examples of the apparatus response for polymer 
solutions are given. Both apparatus provide valuable data in 
relation to the coupling of ink-jet rheology and jetting properties.  

Introduction 
Liquid droplet formation is relevant to several applications 

where the deposition of a controlled volume of fluid on a specific 
location is required. Inkjet printing [1], Organic Light Emitting 
Diode (OLED) [2] fabrication or Deoxyribonucleic Acid (DNA) 
[3] in situ synthesis are examples. Different techniques can be 
employed to form a droplet and piezo-type Drop-on-Demand is 
one of the most recent. This method consists in creating a pressure 
wave within a micro-capillary channel full of liquid with an orifice 
at one end with a typical diameter D0 of 20 to 50 μm. Piezo-
electric wall actuators generate a pressure wave which acts against 
the fluid viscosity and surface tension. A ligament of liquid is 
ejected from the orifice and subsequently breaks into droplets [4]. 

Droplet formation is influenced by the both the physical 
properties of the ejected fluid and the process itself. The fluid 
density ρ, viscosity η and surface tension σ are relevant and 
typically the viscosity is between 1 to 20 mPa.s at temperature 
between 25°C and 50°C and surface tension 20 to 40 mN/m for 
ink-jet applications. The amplitude of the pulse applied on the 
fluid also influences the jetting by modifying the fluid velocity U 
outside the printhead. From dimensional analysis, the Reynolds 
number, which represent the ratio of the inertia to viscous force, 
and the Weber number, which represent the ratio of the inertia to 
surface tension force, have been found to control the jetting 
process [5]. They are defined as following: 
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The Ohnesorge number, which represents the ratio of viscous 
to surface tension forces and which is independent of the droplet 
velocity, also plays an important role. It is defined as following 

  
 (3) 

 
Fromm [5] predicted that stable droplet formation can occur 

for Z > 2 where Z is the inverse of the Ohnesorge number. Later, a 
computational and experimental study about the DOD drop 
formation by Reis and Derby [6] showed that a printable fluid 
should obey 1< Z <10. The lowest value of Z is governed by the 
dissipation of the pressure wave by the viscosity of the fluid 
whereas the higher limit is determined by the fact that the fluid 
forms satellites droplet instead of a unique droplet. More recently, 
Jang et al [7] have also shown that jetting, at 3 m/s, of fluid with Z 
number between 1.43 to 17.32. They refined the previous interval 
to be between 4< Z <14. 

These past studies have only considered Newtonian fluids, 
however, it has been established that viscoelasticity can strongly 
influence ink-jet performance [8]. Ink-jet fluid linear viscosity can 
be represented in term of a Complex viscosity η* = (G’ + iG’’)/ω 
where G’ is the elastic modulus and G’’ is the loss modulus. 
Previous work has shown that inkjet fluids can be characterised 
using G’ and G’’ data, however, the short relaxation times 
involved with ink jet fluids require special experimental 
techniques to be adopted [8, 9]. 

In the present work, the recently developed Piezo Axial 
Vibrator (PAV) [10] has been used to quantify the LVE of a series 
of model polymer fluid and commercial UV ink. In addition, a 
“Cambridge Trimaster” filament stretching apparatus was used to 
investigate the effect of polymer and particle loading on the 
filament thinning and break-up profiles. The “Cambridge 
Trimaster” was developed from work carried out using an MPR as 
a filament break-up device [8]. 

Experiment; fluids and apparatus  
Two series of test fluid have been investigated. The first was  

a series of mono-disperse poly(styrene) with a molecular weight of 
110 kg/mol (PS110) at different concentrations (0, 0.1, 0.2, 0.5 and 
1wt% respectively) dissolved in mixtures of diethyl phthalate 
(DEP) and diotyl phthalate (DEOP) in order to obtain a matched 
zero shear rate complex viscosity of 17 mPa.s at 25°C. The second 
series of fluids was a pigment paste of Phthalocyanine blue 
organic particle (average diameter ~100nm) and poly-disperse 
poly-acrylate (molecular weight 10 to 20 kg/mol) at different 
weight concentration (0, 2, 4 and 6wt%) diluted in mixtures of 
three Acrylate-monomers UV varnish with base viscosity of 10, 
20s and 30 mPa.s respectively. These fluids have been provided by 
SunJet, the inkjet division of SunChemical®. A resulting matched 
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zero shear rate complex viscosity of 17mPa.s at 40°C was obtained 
for this series. The fluid physical properties are summarized in 
Table 1. 

 Series I Series II 
Solvent Diethyl Phtalate / 

Dioctyl Phtalate 
Acrylate monomer 

Viscoelastic 
enhancer 

Polystyrene (110 
kg/mol) 

Phthalocyanine blue 
organic particle and 

poly-acrylate 
Key variables 0 to 1wt% 0 to 6wt% 
η0 (mPa.s) 17 (at 25°C) 17 (at 40°C) 
σ (mN/m) 37 / 15 32 
ρ (kg/m3) 1120 / 950 1050 

Table 1: Physical properties of polymer (series I) and pigment solutions (series II)  

The high frequency linear viscoselasticity (LVE) of the fluids 
were investigated using a Piezo Axial Vibrator (PAV), which was 
developed by the Prof. Pechhold [10, 11].  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Mechanical Model of the PAV 

The apparatus, schematically presented in figure 1, consists of 
a thin cavity of liquid (d < 200μm) surrounded by solid surfaces. 
An oscillatory piezo-element activated squeeze flow is generated 
by the motion of a bottom plate with a very small amplitude of 
approximately 5nm over a range of frequency from 0.1Hz to 
10000Hz. The complex spring constant K* of the apparatus is first 
determined without the fluid being presented and then with the 
fluid present, the difference giving the response of the fluid on its 
own. The PAV gives the shear modulus, G* = G’ + iG”, and the 
complex viscosity η* = G*/iω (where ω is in rad/s). The 
temperature is regulated in the PAV and a range between 5°C and 
50°C can be investigated.  

The second experimental set up is a filament stretching, 
extensional rheometer, the “Cambridge Trimaster” [12]. This 
apparatus performs filament stretching at a constant velocity for a 
fluid initially placed between two pistons of initial diameter 
1.2mm. Both pistons, are attached on the opposite side of a belt, 
and move symmetrically apart for a given distance allowing the 
mid-filament to remain in a central position during the experiment. 

The pistons can moved from a distance of 10μm to 10cm at a 
maximum relative velocity of 1m/s. When the pistons stop, the 
filament self-thins under the action of the capillary and viscous 
forces. The Bond number was calculated to be small (Bo =  
ρgD0

2/4σ = 0.1), confirming that gravitation effects were 

negligible in comparison to capillary forces. A high speed camera 
(Photron Fastcam 1024 PCI ) was coupled with the “Cambridge 
Trimaster”, allowing the transient profiles to be recorded at a 
frame rate as fast as 100000 frames per second at the reduced 
resolution of 32x32 pixels, and with a shutter time as low as 3μs. 
The continuous light is guided by fibre optics. The filament 
thinning measurement, as well as the filament break-up behaviour, 
was obtained using automatic image treatment specifically 
developed for, and included within, the “Cambridge Trimaster” 
software suite. This apparatus enables the measurement of the 
transient elongational viscosity and the observation of filament 
profiles. Both elements are relevant to inkjet droplet and satellite 
formation. 

 

 
Figure 2: Schematic of the “Trimaster”  filament stetching and breakup 
apparatus 

Results and discussion 

PAV: Linear viscoelasticity. 
Many weakly viscoelastic fluids can be described by a pure 

viscous component combined with a Maxwell spring and dashpot 
model as described by equation 4. In the low frequency limit it can 
be seen that G’’ increases linearly with frequency and G’ increases 
with the square of frequency. In equation 4, g is the elastic 
modulus of the Maxwell element and τ the relaxation time of the 
Maxwell element. 

 
 
 
 
 (4) 
 
 
 
 
The G’’ response as function of excitation frequency for the 

polymer solution series is shown in figure 4 and this data shows a 
linear frequency response for all the samples which is consistent 
with the low frequency limit of the Maxwell model from equation 
4. In addition, because the fluids had been viscosity matched, all of 
the curves overlap. 
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Figure 3: Loss modulus G’’ of the solution of DEP-PS at different weight 
concentration, η* = 17mPa.s at 25°C. The dash line is a guide and represents 
a linear evolution with the frequency. 

The G’ response for the polymer solution series is shown in 
figure 4 and here it can be seen that as the polymer concentration 
increases, a G’ response develops. In addition, the slope of the G’ 
curves as a function of frequency is closer to a gradient of two, 
rather than one. Again, this is consistent with the low frequency 
limit model of equation 4 and it can be safely assumed that the 
origin of the LVE G’ in this case is due to the presence of the 
entropically coiled polymer chains within the quiescent solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Elastic modulus G’’ of the solution of DEP-PS at different weight 
concentration. The dash line is a guide and represents a power law evolution 
with index 2 with frequency. 

The G’ response of the particle laden series of fluids is shown 
in figure 5. As with the polymer series, there is a development of 
G’ with loading however in this case the slope of the G’ curve is 
closer to one, rather than two as with the polymer solution. In the 
case of the particle loading series we believe the origin of the G’ is 
due to particle interaction rather than entropy.  

For both polymer and particle loading, the development of G’ 
can only be detected in a high frequency range, in this case, above 
1000 Hz, which is beyond the range of normal mechanical 
rheometers. Thus, devices such as the PAV need to be used.  
Further details on PAV rheology applied to ink jet fluids can be 
obtained from [13]. 

 
Figure 5: Elastic modulus G’’ of the model inks with different weight pigment 
concentration, η* = 17mPa.s at 40°C. The dash lines are guide and represent 
linear evolution and power law evolution with index 2 with frequency. 

Trimaster: Filament breakup 
As an example of the way different fluid and particle loading 

can influence processing behaviour a series of Trimaster filament 
breakup situations are shown in figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Photograph of the filament break up captured with the Trimaster in 
the extensional viscometer mode of (a) DEP, (b) DEP + 0.2% PS110, (c) DEP 
+ 0.5% PS110. Initial gap size: 0.6mm, stretching distance: 0.8mm, stretching 
velocity: 150mm/s 

Figure 6 shows that even with viscosity matched solutions the 
break-up behaviour can be different for different polymer loadings. 
In the pictures shown, filament stretching terminated at 6ms and 
subsequent breakup behaviour is followed. In the case of the pure 
solvent, end pinching is observed and a single central satellite drop 
is formed. As polymer is added, filament thinning occurs and no 
satellite drop is formed. The addition of additives into a fluid can 
effect both the form of the breakup and the timescale over which 
breakup occurs. Both are important in relation to ink jet printing. 
Further details on ink jet fluid breakup can be obtained from [8, 
12]. 

1

10

100

1000

10 100 1000 10000

F requenc y (Hz)

G '' (P a)

0.10wt%
0.20wt%
0.50wt%
1wt%

ωα
0.1

1

10

100

100 1000 10000
F requenc y (Hz)

G ' (P a)

2wt%
4wt%
6wt%

αω

2αω

0.1

1

10

100

1000

100 1000 10000

F requenc y (Hz )

G ' (P a)

0.10wt%
0.20wt%
0.50wt%
1wt% 2αω

6ms 8.5 8.84 9.16 

6ms 8.5 9.33 9.66 

6ms 8.5 9.83 10 

 
 
 
 
 
(a) 
 
 
 
 
 
(b) 
 
 
 
 
 
 
(c) 

738 Society for Imaging Science and Technology



 

 

Conclusions 
Two different experimental apparatus have been presented 

and used to distinguish ink-jet fluids with similar base viscosity. 
The PAV gave the high frequency rheological characterization of 
weakly viscoelastic fluids and the second apparatus investigated 
filament breakup behaviour. The paper has demonstrated high 
frequency linear viscoelastic characteristics of inkjet fluids. 
Polymer and Pigment loading effects have been identified as two 
different sources of LVE and the viscoelasticity developed with 
their loading. For the polymer, a Maxwell like behaviour with an 
increase of G’ as a power law with index of 2 has been observed, 
whereas for the pigment, an almost linear evolution has been 
measured. The "Cambridge Trimaster" filament stretcher has been 
used to demonstrate the effect of the polymer loading on the 
transient filament thinning profile, the extensional viscosity and 
the breakup time. Different behaviours have been observed for 
different fluids and a link exists between fluid rheology and 
processing behaviour. 
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