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Abstract 
We present a new experimental method to assess the jetting 

performance of fluids for use in drop-on-demand (DoD) inkjet 
printheads. The oblique collision of two continuous liquid jets 
leads to the formation of a thin oval liquid sheet bounded by a 
thicker rim which disintegrates into ligaments and droplets. Under 
certain conditions the flow structure exhibits a remarkably 
symmetrical ‘fishbone’ pattern composed of a regular succession 
of longitudinal ligaments and droplets. For a series of model 
elastic fluids containing polystyrene (PS) in diethyl phthalate 
(DEP), ejected from nozzles with an internal diameter of 0.85 mm, 
the shape of the fishbone pattern varies strongly with polymer 
concentration. The same fluids were used in a Xaar piezoelectric 
DoD print head to characterize their jetting performance in terms 
of the maximum ligament length, a crucial parameter in 
determining the printability of the fluid. There are close 
similarities between the ligament collapse behaviors in both 
experiments. Good correlation was found between the maximum 
included angle of the fishbone pattern and the maximum ligament 
length in the jetting experiments, which suggests that a test based 
on oblique impinging jets may be useful in the development of 
fluids for inkjet printing.   

Introduction 
 Inkjet printing technology has been widely applied not only 

to conventional graphics printing but also as an industrial 
manufacturing process for radio frequency identification (RFID) 
tags, printed circuit boards (PCBs) and organic electronics such as 
plastic organic light emitting diodes (P-OLEDs) and organic thin-
film transistors (OTFTs), as well as to the deposition of biological 
material [1-5]. For optimal performance in drop on demand (DoD) 
inkjet printing, the fluid should satisfy specific physical properties. 
In the case of Newtonian fluids which have now been used for 
more than 30 years, it has been proposed that Z, the inverse of the 
Ohnesorge number of the fluid (Z = 1/Oh) must lie in the range 1 < 
Z < 10 for proper drop formation [6]. More recently, a printable 
range of 4 < Z < 14 has been suggested by considering 
characteristics such as single droplet formability, positional 
accuracy and maximum allowable jetting frequency [7]. Inkjet 
printing with non-Newtonian fluids, which is essential for various 
industrial applications, is significantly affected by the presence of 
viscoelasticity in the ink as the droplet is formed and ejected in a 
highly extensional flow. Poor jetting behavior will occur above a 
certain degree of viscoelasticity, which typically arises from the 
presence of polymers; such fluids may form jets with very long 
tails, or the jet may even fail to detach from the nozzle. So far, few 
studies have been conducted on the printability of viscoelastic 
fluids. Tuladhar and Mackley studied the correlation between 
filament stretching and jetting performance, using a variant of a 
multipass rheometer [8].  Hoath et al. tested dilute polystyrene 

solutions with different molecular weights to explore the 
limitations of the polymer content in an inkjet fluid. [9]. 

The present work examines the formation and breakup of the 
fluid structure created by the oblique collision of two impinging 
viscoelastic jets. In order to evaluate the effect of varying 
molecular weights and concentrations of polymers on the fluid 
structure, we focus on a transient regime, the so-called ‘fishbone’ 
[10], which involves periodic breakup of the stream into transverse 
ligaments and droplets. The possibility is then explored that 
observation of this fishbone structure might be used to access 
rheological information which is relevant to jetting performance 
from a piezo inkjet printhead. 

Experimental fluids 
Solutions containing polystyrene (PS) in diethyl phthalate 

(DEP) were formulated to investigate the systematic effects of 
polymer concentration and molecular weight. The 99.5% purity 
DEP was purchased from Sigma-Aldrich and PS was obtained 
from BASF. Solutions of linear PS with average molecular weights 
of 110,000 g/mol (designated PS110) and 210,000 g/mol (PS210) 
were prepared in DEP with varying concentrations from 0.01 wt% 
to 1 wt%. The viscosities were measured with a Viscolite 700 
vibrational viscometer (Hydramotion Ltd., UK). Surface tension 
was measured with a bubble tensiometer (SITA pro line t15) and 
was essentially the same for all the polymer concentrations. 

PAV characterization 
The piezoelectric axial vibrator (PAV) is a squeeze-flow 

rheometer apparatus to characterize the viscoelastic behavior of 
complex fluids [11].  The storage modulus (G′) and the loss 
modulus (G′′) of a non-Newtonian fluid are obtained from the 
response of the test fluid to compression between stainless steel 
plates at high frequency f (up to 4 kHz). The total modulus can be 
expressed as G*= (G′2 + G′′2)1/2. The variation of G′ and G′′ with 
frequency for the 1 wt% PS110 solution has been presented 
elsewhere [9]. The degree of viscoelasticity of the test fluid was 
characterized by the ratio G′/G* at f = 1 kHz, since this frequency 
relates to the frequency of droplet generation (with a period of ~ 1 
ms) in the fishbone regime, as shown below.  

Experimental apparatus 
A schematic diagram of the apparatus is presented in Fig. 1. 

Fluid from the reservoir was pumped through flexible tubing via a 
flow meter into a splitter, and divided between two identical 
stainless steel hypodermic needles (with flat  ends) with an internal 
diameter of 0.85 mm. The angle between the axes of the two 
needles was held constant at 78°, for which the fishbone pattern 
was best developed in pure DEP. The jet lengths, defined as the 
distances from the ends of the nozzles to the impact point, were 
3.5 mm and 6.5 mm. This asymmetry in nozzle position was 
required to generate the flow instability needed for a symmetrical 
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fishbone structure, which also required precise alignment of the 
needles. The rotor-based flow meter with an electronic pulse 
output was calibrated for each solution by measuring the 
frequency of the pulses and the fluid volume ejected from the 
needles over a set time. The jet velocity from the nozzles was 
varied by changing the speed of the pump, in order to observe the 
progression of the resulting fluid pattern from ~1.5 to 6 m/s. The 
corresponding ranges of Reynolds number (Re) and Weber number 
(We) were 70< Re < 700 and 30 < We < 600. 

 
 

 
Figure 1. Experimental apparatus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 2. Schematic diagram showing the collision of two jets 

Single-flash photography with back-illumination was used to 
capture individual images of the jet interaction region and to 
extract quantitative information such as the sizes of the resulting 
droplets and the spacing or angle between the droplet streams. The 
light source was a xenon lamp with ~1μs flash duration and the 
image was captured with a 10 megapixel digital single lens reflex 
camera (Nikon D40X). The short duration of the flash ensured that 
there was no significant motion blurring. The axis of the optical 
system was normal to the fluid sheet shown in Fig. 2.  

In this experimental setup the lamp, camera and flow meter 
were controlled and synchronized by a PC data acquisition board 
(NI-6016, National Instruments) programmed with Labview. A 
digital pulse signal was sent from the NI-6016 to the remote 
controller of the camera, which operated with a 1/3 second shutter 

speed. Another pulse was produced with a specified delay time 
after the first one and transferred to the lamp controller, which 
generated a flash of light while the camera shutter was open. At 
the same time the board acquired a series of digital signals from 
the flow meter, so that the flow rate and hence jet velocity could 
be accurately recorded. 

Observations 
As seen in Fig. 3, the collision of two jets of a dilute solution 

of PS110 (0.02 wt% in DEP) with low viscoelasticity results in the 
formation of various fluid regimes with increasing flow velocity: 
oscillating streams (not shown); fluid chain (a); periodic 
atomization (the ‘fishbone’ form) (b); smooth single sheet (c); 
sheet with fluttering (d); disintegrating ruffled sheet (e); and 
violent flapping (f). Initially, the succession of sheets in the fluid 
chain in (a) consist of thin oval fluid regions each bounded by a 
thicker rim. The initial oval film becomes larger with a higher flow 
rate. Small perturbations on the rim start to appear and gradually 
grow, leading to periodic detachment of droplets. As the flow rate 
is increased, the pattern takes the characteristic fishbone form 
consisting of a fluid sheet, a series of ligaments and droplets. The 
ligaments elongate, and the degree of that extension depends on 
both the viscosity and elasticity of the fluid. When this pattern 
extends to its maximum length, it suddenly becomes converted 
into a stable single sheet larger than that seen in the fluid chain, 
and then on further increase in velocity becomes unstable again, 
giving rise to random droplets. As the jet velocity is increased 
further, the sheet becomes ruffled, forming a disintegrating ruffled 
sheet with a stable rim. Finally, violent flapping ensues at a very 
high flow rate. 

 

 
Figure 3.  Single-flash images showing the evolution of the fluid sheets 
formed by impinging jets of a liquid with little viscoelasticity (0.02 wt% PS110 
in DEP). 

Image Processing 
Image processing was performed in several steps as shown in 

Fig. 4. An 8-bit grayscale image (b) was obtained by extracting the 
intensity plane from an original HSI (Hue, Saturation and 
Intensity) image (a). In the next step, thresholding was applied to 
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isolate objects of interest in the image. Through this process, the 
grayscale image with pixel values ranging from 0 to 255 was 
converted into a binary image with pixel values of 0 or 1 (c). 
Binary morphological operations were also performed in order to 
remove unwanted information. Finally, particle analysis was 
carried out to make measurements such as drop diameter, drop 
spacing and stream angle, defined by 4 points. 

 

 
Figure 4.  Image processing sequence. Images are rotated through 90°. 24-bit 
RGB (a), 8-bit grayscale (b), 2-bit binary (c), particle analysis (d) 

 
 
 

 

 
 

Figure 5.  Definition of maximum fishbone angle (MFA) 

Viscoelasticity effects on the fishbone regime 
The effects of fluid viscoelasticity on the flow structure are 

most clearly observed in the context of the fishbone structure. As 
discussed above and shown in Figs. 3(b) and 4, in this regime the 
flow pattern consists of a single oval fluid sheet bounded by a 
thicker rim which becomes unstable forming ligaments and 
droplets. It is highly likely that the perturbation is initially 
triggered by the part of the fluid flowing upwards after colliding. 
The instability starts from the upper part of the sheet and continues 
to develop around the rim, ending up forming a longitudinal 
ligament which eventually breaks up into droplets. It is useful to 
introduce the concept of the ‘fishbone angle’ to describe the 
degree of development of the fishbone structure. The fishbone 
angle is defined as the angle formed by extending the line through 
the first two successive pairs of droplets on each side of the 
fishbone structure, as illustrated in Figs. 4(d) and 5. The maximum 
fishbone angle (MFA) is the angle θ when the flow structure is 
fully developed, just before it changes to the next regime (i.e. the 
smooth fluid sheet shown in Fig. 3(c)). For precise and reliable 
measurement through the imaging processing technique, two 

consecutive droplets on each set respectively were selected when 
they had just detached from the ligaments. The computed centers 
of mass of those four droplets were used to retrieve the angle 
defined by the four droplets. 

Correlation of MFA with jetting performance 
In order to study the correlation between fishbone patterns in 

the impinging jet experiment and jetting behavior in from a DoD 
printhead, the same PS solutions were jetted from a Xaar XJ125-
200 printhead. The fluids were jetted at room temperature (25 °C), 
using the same waveform timings throughout but adjusting the 
piezo drive level for each fluid to achieve a target velocity of ~6 
m/s at 1 mm printing distance. The details of the apparatus used in 
this work have been published before [12]. The maximum 
ligament length (MLL) was measured from an image captured 
when the jet had just detached from the nozzle plane. MLL is one 
of the most crucial parameters to determine the printability of the 
fluid.  Many printers operate at about 1 mm stand-off distance, so 
that 1 mm is the maximum practical ligament length for successful 
printing, although a maximum length of 0.4 to 0.6 mm would 
typically be recommended for best print quality. Fig. 6 shows 
typical images of jet arrays for a dilute solution (0.01 wt% PS110 
in DEP) and a solution close to the limit of printability (0.4 wt% 
PS110). 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Images of jet arrays  for a dilute polymer solution (0.01 wt% PS110) 
(a) and for a more concentrated solution (0.4 wt% PS110) (b). 

Fig. 7 compares the values of MLL as defined above with the 
values of MFA for solutions of PS 110 in DEP as a function of 
polymer concentration. The two measurements show remarkably 
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consistent trends. The ligament length begins to rapidly increase 
from 0.1 % concentration, at which MFA starts to decrease in a 
similar way. These effects probably occur when the solutions 
move from a dilute regime into a semi-dilute regime, where 
polymer chain-to-chain interactions start to occur. Fig. 8 shows 
that MFA also decreases in parallel with the increase in the 
elasticity ratio G′/G*, suggesting that this is linked with the fluid 
elasticity. We may conclude that intermolecular interactions in 
these polymer solutions strongly influence the ligament length 
under printing conditions in the same way that they affect the 
fishbone structure, despite the differences in timescale and 
drop/ligament size.  

These results suggest that the interaction of colliding 
continuous jets may be useful to obtain information which is 
relevant to the dynamics of drop formation and breakup in inkjet 
printing; it might for example be used to determine the maximum 
polymer content in fluids intended for inkjet printing. Similar 
results have been obtained for solutions of polystyrene with other 
molecular weights. 
 

 
Figure 7. Comparison of the variation in maximum ligament length (MLL) and 
maximum fishbone angle (MFA) with polymer concentration. Both MLL and 
MFA begins to change rapidly above about 0.1 wt% concentration. 

 
Figure 8. Comparison of maximum fishbone angle (MFA) with the elasticity 
ratio G'/G*. All the solutions show a decrease in MFA as the elasticity ratio 
increases. 

 

Conclusions 
We suggest that printability of a polymeric fluid can be 

predicted by observation of the symmetrical ‘fishbone’ structure 
which is generated under certain conditions by the oblique 
collision of two impinging jets. We have shown that fluid 
viscoelasticity has a strong effect on the formation and break-up of 
a non-Newtonian fluid sheet. As the elasticity of the fluid grows, 
the maximum angle defined by the fluid fishbone structure was 
found to decrease. Fluid fishbone patterns can be used to 
distinguish viscoelastic regimes in terms of degree of dilution. 
Good correlation is found between the maximum fishbone angle 
(i.e. the maximum included angle between the droplet streams in 
the fishbone pattern) and the maximum ligament length in jetting 
experiments from a DoD printhead, which suggests that the 
fishbone phenomenon may provide a simple and useful tool to 
predict the upper limit of polymer concentration in inkjet printing 
fluids. 
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