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Abstract 
This technical study focuses on two production processes - 

namely the widely used furnace black process and the gas black 
process. These pigment blacks types were then subjected to three 
different gas phase, post oxidation processes to alter the surface 
chemistry. The influence of these changes was evaluated in 
dispersion and inkjet ink form to gain a better understanding of 
their impact on a range of physical properties related to inkjet 
print performance. 

Besides the general physico-chemical analysis of these 
samples, advanced techniques like X-ray photoelectronic 
spectrometry (XPS) and titration methods are used to characterize 
the surface chemistry. Pigment dispersibility and particle size were 
determined. Finally, optical densities and inter-color bleeding 
properties of two formulated inkjet inks, based on these surface 
oxidized carbon black pigments, are evaluated. The test studies 
show distinct advantages of a surface oxidized carbon black 
pigment for improving dispersibility of aqueous systems as well as 
the influence of the oxidation process on critical print qualities 
such as optical density and inter-color bleeding. 

Introduction 
Carbon black has historically been used as the preferred 

colorant in conventional and digital printing processes. For inkjet 
inks, it is an ideal pigment to deliver the high optical densities 
essential for printed text. Due to the increasing demands for faster 
print speeds and greater print reliability - especially for 
commercial printing applications, surface modified carbon black 
pigments are of high interest to the print industry. Modifications to 
the carbon black process can increase the hydrophilic surface 
groups to improve dispersibility of carbon black pigments in 
aqueous systems. Additionally, its fractal structure and surface 
properties influence some of the key performance attributes of 
inkjet inks, including their optical density and inter-color bleeding 
properties. Surface modifications can be accomplished via post-
oxidation processes leading to a broad variation in surface 
chemistry as shown in Figure 1. It is common to measure the 
degree of oxidation of a carbon black pigment in terms of its 
volatile matter (at 950 °C) according to DIN 53552. In the case of 
non-oxidized furnace blacks, the degree of oxidation is usually < 
1.5 % while in the case of non-post-oxidized gas blacks the range 
lies between 4 to 6 %. The post-oxidation process can increase the 
degree of oxidation to > 20 %. 

The two important carbon black manufacturing approaches 
are the gas black and the furnace black process [1]. Due to 
differences in these processes, a wide range of distinctly different 
black pigments can be produced. The key differences of these 
black pigments as produced by the gas black and furnace black 
manufacturing processes are summarized in Figure 2. 
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Figure 1: Surface functional groups on carbon blacks 
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Figure 2: Key differences between gas blacks and furnace blacks 

The gas black process derives its name from the fact that the 
feedstock is vaporized and fed to the combustion chamber by 
means of a carrier gas. This vaporization step prevents the carbon 
black pigment from being contaminated with feedstock residues 
and also results in formation of a low ash product. During the 
burning phase, the presence of oxygen ensures a high degree of 
oxygen-functional groups on the pigment surface. These polar 
groups account for the acidic nature of all gas blacks.  

The furnace black process uses liquid hydrocarbons as 
feedstock. The feedstock is injected into a refractory-lined furnace, 
which is heated by the combustion of natural gas and pre-heated 
air. After the carbon black pigment is formed, it is quenched by 
water, cooled down and separated from the gas stream. Furnace 
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blacks usually carry a small amount of basic functional groups on 
their surface and therefore exhibit a hydrophobic, non-polar 
character, and have a pH value above 7. 

Characterization of Pigment Black Surface 
Different methods are available to characterize the carbon 

black pigment surface [6]: 
• pH value 
• Volatile matter at 950 °C 
• Titrimetric determination of acid and basic surface oxides [2] 
• Spectrometric methods by means of X-ray photoelectron 

spectrometry (XPS) [3] 
The pH value of a carbon black pigment is a good indicator of 

the type of surface groups present. Low pH values point to acidic 
groups while high pH values are due to basic groups.  

More detailed information about the presence and 
concentration of functional groups on a carbon black pigment 
surface is obtained by measuring the weight loss when heated to 
950 °C (% volatiles). The functional groups decompose in the 
temperature range of 300°C to 950°C to form CO, CO2, H2O and 
H2. 

Quantitative methods to determine the acid and basic surface 
oxides are obtained by titrations with sodium hydrogen carbonate, 
sodium carbonate, sodium hydroxide solution and sodium 
methylate [2]. 

The surface oxides may be subdivided by their acidity into 
four groups of different acid strengths. Such titration methods are 
still very time consuming and XPS measurements are a preferred 
technique to determine the different surface groups. XPS detects 
the surface groups selectively and the measured signals originate 
solely in the uppermost atomic layers. XPS measurement beds 
covering an area of 1cm2 are measured integrally which permit a 
comparative analysis of the surface oxygen fraction. [3]  

In our test study we used a combination of these test methods 
to characterize the degree of oxidation of different surface 
oxidized carbon black pigments. 

Experimental  
This technical study focused on a series of carbon black 

pigments with a primary particle size of about 25 nm. A 
commercial gas black type (GB-Ref.) as well as a furnace black 
(FB-Ref.) were used as reference samples. Three different gas 
phase post-oxidation processes designated with A, B, C were 
applied to produce post oxidized samples GB-A, GB-B, GB-C and 
FB-A, FB-B. 

Volatile matter at 950 °C, pH value, XPS-measurements and 
a titrimetric method to determine the amount of carboxylic groups 
were used to analyze the surface chemistry of the various carbon 
black pigment samples in this study. The test results show that the 
choice of oxidation agent has a tremendous influence on the 
surface chemistry of the carbon black samples. Oxidation agent B 
resulted in the highest concentration of carboxylic groups for the 
gas black as well as the furnace black. Both the titrimetric method 
and the XPS measurements on the surface oxidized gas black 
samples, GB-A and GB-B, confirmed the highest amount of 
carboxylic groups present. While there isn’t a large difference 
between GB-A and GB-B in volatile matter at 950 °C, the XPS 
method reveals sample GB-B has the greater quantity of acidic 
polar groups. 

 
Table 1: Characterization of Surface Groups  
(* Titrimetric method, ** XPS method)  
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GB-
Ref 4.5 5.0 13 1.9 0.7 1.1 1.58 

GB-A 3.0 15.3 467 6.9 3.2 3.3 1.03 

GB-B 2.6 13.8 587 15.0 5.4 8.2 1.52 

GB-C 4.0 10.6 152 4.2 1.6 2.1 1.28 

FB-Ref 9.5 0.8 0 0.3 0.1 0.1 1.56 

FB-A 3.7 2.0 33 1.8 0.6 1.0 1.65 

FB-B 3.1 2.6 61 3.7 1.1 2.3 2.09 
  

Dispersibility of Surface Oxidized Carbon Black 
Pigments 

An examination of a dispersion sample using a transmission 
light microscope at 500X magnification allows for a quick 
characterization of the dispersion quality since coarse particles can 
easily be detected. Further valuable information on the dispersion 
quality and particle size distribution can be obtained by static laser 
light scattering measurements. These measurements are also useful 
to evaluate the dispersibility of carbon black pigments. In a simple 
standard test procedure, a pre-defined quantity of carbon black 
pigment is stirred into de-ionized water.   
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Figure 3: Particle size distribution of surface oxidized sample  GB-B (blue) in 
comparison to non-oxidized GB-Ref (red). Measured with Horiba LA-910 in 
water without any surfactant (1 min US). 
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The particle size distribution can be measured as a function of 
time, with and without ultrasonic treatment. Such a test is 
beneficial for estimating the dispersibility of carbon black 
pigments. Figure 3 shows there are significant differences in 
particle size distribution profiles between the non-post-oxidized 
gas black (GB-Ref) and the surface oxidized sample (GB-B). The 
finer particle size and narrower distribution of sample GB-B is 
directly attributed to the higher concentration of surface oxides. 

Optical density  
The paper coating quality is one of the prime determinants for 

the optical density values achievable with an ink. The paper 
coating can prevent the penetration of pigment particles thereby 
forming a layer of pigment particles at the paper surface allowing 
the development of high optical density values. This situation is 
different for uncoated papers as the finely dispersed carbon black 
pigment particles easily penetrate into the voids and pores of an 
untreated paper thus decreasing the optical density of the printed 
text or image. Preventing this penetration of carbon black pigment 
into an uncoated paper is the challenge for ink formulators.  

It is common for inkjet inks to contain additives possessing 
good wetting properties (e.g. dispersants), to stabilize the ink. 
These dispersants will also accelerate the intrusion of the pigment 
into the paper resulting in lower optical density values. 

In our laboratory testing, a model ink (Table 3) was tailored 
for a bubblejet (thermal print head) printer. The ink was 
formulated at a concentration of 4.0 % based on the pigment 
weight. The ink was applied to a variety of inkjet and plain papers 
at a thickness of 6 µm. After drying, the optical density of these 
draw-downs was determined with a commercial spectral 
photometer (Table 4). 

In preparing carbon black pigment dispersions, the large 
agglomerates must first be broken down into the finer aggregates 
by grinding. Pigment dispersions can be produced with a variety of 
dispersing equipment and techniques. Bead mills are one of the 
most commonly used piece of equipment in the manufacture of 
carbon black pigment dispersions.  

In our lab test series we dispersed the carbon black pigment 
samples according to the dispersion formulation described in Table 
2 by using a shaking mixer (Lau type BA-S 20K). The dispersing 
time was 2 hours. 0.8–1 mm zirconium oxide beads were used to 
increase the input of grinding energy.  

The test results confirm that the choice of pigment has a 
significant effect on the resulting optical density values: All gas 
blacks obtained much higher optical densities than any of the 
furnace blacks - on both plain and coated papers. The primary 
reason accounting for greater optical densities achieved by the gas 
blacks are the network-like re-agglomeration at the substrate 
surfaces. It is the very high structure of gas blacks that minimize 
the intrusion of the pigment into the paper pores and voids[4]. 

These results indicate the surface chemistry of the carbon 
black pigment does not have a significant impact on the optical 
density. However, we tested the influence of the surface chemistry 
of the carbon black pigments on the optical density in another 
dispersion formulation to confirm the above mentioned test results. 
The main difference in this dispersion formulation 2 (Table 6) was 
the use of a non-ionic dispersant as opposed to the anionic type 
used in initial ink formulation. 

Tables 2 through 7 provide detail on the pigment dispersions, 
ink formulations and optical density values achieved on the 
various papers.  

 
Table 2: Dispersion Formulation 1 
  % by weight 
Carbon black pigment 15.0 
Acid Black 1 (anionic dispersant) [4] 1.0 
Biocide 0.3 
De-ionized water 83.7 
 
Table 3: Inkjet Ink Formulation 1 
  % by weight 
Carbon black pigment 4.0 
2-Pyrrolidone 12.0 
1,2 Propanediol 5.0 
Glycerol 3.0 
1,2 Hexanediol 1.2 
De-ionized water 74.8 
 
Table 4: Optical Densities on 6 µm Draw Downs  
(Inkjet Ink Formulation 1) 

 
Table 5: Dispersion Formulation 2 
  % by weight 
Carbon black pigment 20.0 
Tego Dispers 760W (nonionic dispersant) 16.0 
DMEA (Dimethylamino ethanol) 0.2 
Biocide 0.3 
De-ionized water 63.5 
 
Table 6: Inkjet Ink Formulation 2 
  % by weight 
Carbon black pigment 4.5 
Dipropylene glycol 3.0 
1,2 Propanediol 6.0 
1-Methoxy-2-Propanol 5.0 
1,2 Hexanediol 1.6 
De-ionized water 79.9 
 
 
 

 CBP sample  Plain Paper 1 Plain Paper 2 Inkjet Paper 
GB-Ref 1.42 1.46 1.55 
GB-A 1.40 1.45 1.55 
GB-B 1.41 1.45 1.54 
GB-C 1.42 1.47 1.57 
FB-Ref 1.16 1.19 1.31 
FB-A 1.14 1.19 1.31 
FB-B 1.15 1.18 1.31 
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Table 7: Optical Density on 6 µm Draw Down  
(Inkjet Ink Formulation 2) 

 CBP sample Plain Paper 1 Plain Paper 2 
GB-Ref 0.93 0.95 
GB-A 1.05 1.04 
GB-B 1.38 1.47 
GB-C 0.95 0.97 
FB-Ref 0.96 0.94 
FB-A 0.96 0.92 
FB-B 0.98 1.03 

 
Due to the lower surface tension of inkjet ink formulation 2 it 

was not surprising that the optical density results were lower than 
with inkjet ink formulation 1 (see Table 7). However, gas black 
sample GB-B was the only carbon black pigment obtaining 
acceptable optical densities on both plain paper samples. 

Inter-color Bleeding  
Two test methods were used to evaluate the influence of the 

surface chemistry of the carbon black pigment on the inter-color 
bleeding properties of final inkjet inks. The first test method is 
based on determining the flocculation tendency of the carbon 
black pigment as soon as the black pigmented inkjet ink comes in 
contact with a dye based ink (yellow). In theory, a rapid 
flocculation rate of the carbon black pigment reduces its mobility 
resulting in less intermingling (e.g. inter-color bleed) of the inks. 

A small droplet of the inkjet ink sample (Table 6) is placed on 
a microscope slide close to a drop of color dye based inkjet ink. A 
cover slide is carefully placed onto the two drops without any 
pressure. The flocculation tendency of the different inkjet inks was 
evaluated by light microscope at 200X  magnification.  

The test results for flocculation tendency show a broad range 
based on the oxidation level of the carbon black used in the ink. 
The gas black sample GB-B, an oxidized gas black type with the 
highest carboxylic groups, has the strongest flocculation tendency 
with yellow dye based inks. 

 

 
Figure 4: Light microscopic images (200x) of the transition from a black to a 
yellow ink drop. The flocculation tendency (from left: strong: GB-B, moderate: 
GB-A, no: GB-C) correlates with inter-color bleeding properties after printing. 

In a second step a print test was carried out with inkjet ink 
formulation 2 using a bubblejet (thermal) printer. The carbon black 
pigment samples showed significant differences in inter-color 
bleeding properties which clearly correlated with the flocculation 
tendency (Table 8). 
 
 
 
 

Table 8: Inter-color Bleeding and Flocculation Tendency 

Summary 
This study shows the advantages of  tailored surface oxidized 

carbon black pigments for specific inkjet ink performances in 
regard to optical densities and inter-color bleeding effects. It 
demonstrates that the manufacturing process (gas black or furnace 
black) as well as the oxidation process are key parameters to adjust 
the dispersibility and the inkjet ink performances of surface 
oxidized carbon black pigments. The XPS method is beneficial for 
quantitatively determining the surface oxides of carbon black 
pigments. A high concentration of carboxylic groups on the carbon 
black surface features technical advantages for increasing optical 
density values and for reducing inter-color bleeding. 

As ink formulators know in designing a specific ink, there are 
always trade-offs to be made between ink stability (choice of the 
right dispersant) and printing properties (mainly optical density 
and inter-color bleeding). A surface modified carbon black 
pigment with tailored carboxylic group density offers additional 
degrees of freedom for the ink formulator, e.g. to lower the amount 
of polymeric dispersants etc. The significant improvements made 
to dispersibility, showed in the case of GB-B (compared to GB-
ref), benefit the dispersion process and allow greater flexibility for 
a higher quality ink to be formulated - resulting in enhanced print 
performance. 
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 CBP Sample 
Flocculation 
Tendency Inter-color Bleeding 

GB-Ref No Strong 
GB-A Weak Moderate 
GB-B Strong No 
GB-C No Strong 
FB-Ref No Strong 
FB-A No Strong 
FB-B Weak Moderate 
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