
 

Establishing Inkjet Printhead Jetting Performance and 
Tolerances with Overall Printing System Design  
Thomas G. Duby; Fujifilm Dimatix, Inc.; Lebanon, NH/USA 

Abstract 
Establishing the required specifications for a printhead is a 
balancing act between jetting performance, physical interfaces of 
the printhead and application requirements for building a quality 
printer.  Selecting tolerances impacts printhead cost and system 
cost.  This paper will review the tolerance and performance 
specification and metrics of the Dimatix Sapphire printhead, 
analyze drop placement errors as a function of these tolerances 
and examine how tolerances can be balanced to take advantage of 
the capability of some of the tolerances.  Some tolerances can be 
balanced within the assembly; others can be used to improve 
overall performance of the printer itself, or to open tolerance 
requirements on the printer.   
An example of this is the straightness capability in the cross 
process direction.  The maximum standard deviation of 
straightness for the Sapphire is 3.5 milliradians.  This is the 
highest value allowed for any given printhead.  Overall, however, 
the distribution of this parameter is very tight for the measured 
population.  Using a Weibull distribution to describe the 
population, the majority of printheads have a standard deviation 
better the 2.0.  Very good straightness can be balanced with the 
tolerances on the registration features of the printhead to the 
frame, which potentially reduces the cost of these features.  Other 
options can be to increase the standoff of the head over the 
substrate to open up the possibilities for substrates, or to reduce 
the tolerances for the media handling.   

Introduction 
The product specification and tolerances of the Sapphire are 

evaluated using RMS and Monte-Carlo methods. The product 
specification for the Sapphire printhead describes the limits for the 
tolerances, for both the physical dimensions as well as jetting 
characteristics.  Applying an RMS tolerance analysis with these 
tolerances to determine the requirements for a printer system 
indicate that very tight tolerances are going to be required for 
carriage standoff, substrate management as well as carriage yaw 
and other system components.  These requirements will add cost to 
the printer.  Evaluating these tolerances, however, using a 
statistical approach and the capability data for each metric 
indicates very good fit for use.   

To complete the analysis, several assumptions are made.  It is 
assumed that a UV ink on a glossy paper is being used.  The 
relationship between the ink, the paper and the printhead affect 
spot size and the variation of spot size in relation to drop mass and 
cross talk variation.  It is also assumed that a 30 ng drop is used to 
achieve acceptable imaging in a 600 X 600 resolution. The 
resulting pixel size is 1.67 thousandths of an inch or 42.3 µm. At 
this drop size, a spot is expected to spread to roughly 106 µm in 
diameter on glossy paper (for this model).  With perfect drop 
placement (no error in process or cross-process drop placement) a 
typical drop would cover the four corners of each pixel by 

approximately 20 µm. It is assumed that a stochastic image 
strategy is employed to reduce the impact of drop placement 
errors.  This implies that any printhead in the system can address 
any pixel in the image and that neighboring pixels can be printed 
by the same nozzle or a difference nozzle on the same or other 
printhead.  To evaluate the impact of velocity errors on Y printed 
spot position, a substrate speed of 1.25 m/s is used. 

Tolerances Considered 
Both physical and jetting tolerances for the Sapphire 

printhead are used.  The mechanical tolerances of the printhead are 
pitch (the distance between jet 1 and jet 256), first jet to 
registration feature, parallelism of the nozzle row to the 
registration features on the printhead (referred to as “bezels” on the 
Sapphire), parallelism of the nozzle plate to the registration 
features on the bezel in the Z-axis, and Y-bow. For the system, 
printhead standoff is used. 

The jetting tolerances considered are jet straightness in the 
process and cross-process directions, cross-talk and cross-talk 
variability within an assembly, velocity and velocity variability, 
and drop mass and drop mass variability. All performance metrics 
are evaluated at the same standard printing conditions defined in 
the product specification for which the jetting performance 
tolerances are given.  

 

Figure 1. Sapphire Interface control drawing with mechanical tolerances. 

Drop position errors in X and Y are nearly independent.  The 
X direction will be the cross process direction or the direction 
along the row of nozzles, and Y will be the process direction or 
perpendicular to the row of nozzles.  
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Table 1. Sapphire product specifications for jetting 
performance. 

 

Errors in the cross process direction, X, are a function of the 
following mechanical tolerances: jet 1 location relative to the 
primary registration surface, nozzle pitch, and the variation in 
standoff, Z, from end to end.  The jetting performance 
specification X - straightness is the primary tolerance in X ink drop 
location error.  Both the worst straightness error allowed and the 
head average straightness are included in the printhead 
specification, for both X and Y straightness errors. 

Jet 1 location error is the variation in the X location of jet 1 
relative to the registration surface. Nozzle pitch is the distance 
between the first and last jets, and usually linear along the row of 
nozzles.  The variation in standoff, Z, is the result of the error in 
planarity between the mounting bezels and the nozzle plate. Yaw 
has a negligible effect in this direction for individual printheads, 
where the jets are in a single row.  X straightness error is indicated 
in milliradians and is the angle that a drop leaves the nozzle 
relative to the perpendicular trajectory. 

Errors in the process direction, Y, are a function of the 
following mechanical tolerances: yaw and y-bow. The jetting 
performance specifications that effect drop placement errors are 
printhead average velocity, the variability of velocity from jet to 
jet, cross talk, drop mass offset and Y jet straightness. 

Yaw is the error in the planarity of the two reference surfaces 
and the row of nozzles.  Y-bow is defined as the distance of jet 128 
position in Y, relative to the line drawn through jet 1 and 256.  It 
affects only Y errors, as implied in the name. For the purposes of 
this discussion, Y-bow is assumed to be parabolic along the row of 
nozzles with the peak at the center.  The printhead average velocity 
is the average velocity of the 256 jets.  Velocity variability is the 
standard deviation of the velocity of all jets.  Cross talk is a drop 
mass phenomenon that manifests in drop velocity. It is the amount 
the velocity of a single jet changes when its neighbors are turned 
on.  Drop mass offset is the difference in the average drop mass of 
the odd jets and even jets divided by two.  This is the result of 
having two sets of pumping chambers driven by individual PZTs, 
as in the case of Sapphire.  This offset can be eliminated by using 

independent drive voltages for each PZT, but this is usually not 
necessary and rarely practiced. Y straightness is analogous to X 
straightness in Y. 

Spot size is affected only by jetting performance variation.  
Drop mass variation affects the ability of a drop to cover the target 
pixel. The tolerances for drop mass variation are line width 
maximum error and line width variability, drop mass offset, and 
cross talk.  The printhead average drop mass (PADM) variation is 
within the measurement tolerances of the calibration routine, ±1 
ng. Sapphire printheads are calibrated to 30ng in the factory. The 
analysis showed that the variation in drop mass results in a very 
small change in ink drop size, however, the impact was kept in the 
Monte-Carlo model. 

Line width maximum error and line width variability is 
measured using a printed image.  Line width, as implied, is the 
width of a measured line and is indicated as a percentage where 
100% is the width of the average line.  Line width variability is the 
standard deviation of the line width of the 256 jets and is also 
indicated as a percentage.  Drop mass offset is described above as 
well as cross talk. The variation in mass as a result of cross talk is 
derived from velocity cross talk data.  A correlation between 
velocity and drop mass can be determined. 

RMS Tolerance Analysis 
Figure 1 shows some of the mechanical tolerances of the 

Sapphire printhead.  These same tolerances are used for each of the 
printheads in the Sapphire product line.  Table 1 has the jetting 
performance tolerances as indicated in the Product Specification.  
Using these tolerances, X, Y, and Spot size errors can be calculated 
using the root mean square method to determine pixel coverage. 

X Spot Position Errors 
From figure 1, the jet 1 position error is ±10 µm, and the pitch 

error is ±10 µm.  The error in planarity between each mounting 
surface, which is the top edge of the bezel on each end, and the 
nozzle plate is ±80 µm.  The total range is 160 µm. This deviation 
results in a 1.62 mrad error in jet straightness. This results in a 1.62 
µm spot placement error at 1 mm standoff. From table 1, the 
maximum X-straightness error is ±20 mrad.  The spot placement 
error to jet straightness is ±20 µm at 1mm standoff. The RMS error 
of these tolerances is ±25 µm at 1 mm standoff.  At this error, the 
typical pixel is barely covered by the spot even with no error in Y. 

Y Spot Position Errors 
From figure 1, the error in planarity between the bezel 

reference features (2X) and the nozzle row is ±10 µm.  This results 
in a total error for yaw of 20 µm. The y-bow error is specified at 
±15 µm.  The range of the printhead average velocity is 7 – 10 m/s.  
This gives an assumed average velocity of 8.5 m/s.  A fast drop 
will have a drop placement error, at 1mm standoff with a carriage 
speed of 1.25 m/s, of 22 µm “ahead” of the average spot.  A slow 
jet will have an error of 63 µm “behind” the average spot (-63 µm). 
Velocity variability within a printhead is 0.25 m/s. If ±3σ is used, a 
fast drop will travel at 9.25 m/s and result in a spot placement error 
of 11.9 µm.  A slow drop traveling at 7.75 m/s will have an error 
of -14.2 µm.  Cross-talk, at -15%, will result in an average drop 
slowing to 7.225 m/s with the resulting placement error of -26 µm.  
The condition of zero cross talk contributes no error. Drop mass 
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offset is ±1.5 ng. This results in a change of .65 m/s to an average 
drop.  The resulting error is -12.2 µm for a slow drop and 10.4 µm 
for a fast drop.  Using an error in Y of half the yaw error (a jet at 
the middle the printhead), the RMS error in Y for a slow jet is – 79 
µm, and for a fast jet is 44 µm.  If the typical spot lands on average 
in the middle of these values (assumes a normal distribution) the 
error in Y is ±62 µm.   

 

Figure 2. Ink spot, 106 µm in diameter, near a 600 X 600 dpi pixel. 

Figure 2 shows the relationship between the ink spot, the 
circle, and the target pixel using the RMS X and Y error 
information, and the ink spot size, at 106 µm.  The lines from the 
center of the ink spot to the corners of the pixel are the corner 
vectors used to calculate the pixel coverage error. 

Capability of the Sapphire 
 The capability of the Sapphire against the product 

specifications was measured as part of the product development 
process.  Below are several plots of the distributions.  The data was 
collected under laboratory conditions, using a model fluid.  For the 
distributions shown, the Sapphire is quite capable against the 
product specification. The remaining capability data is contained 
within the analysis. 

 

 

 

Figure 3.  Distribution of head average drop velocity – normal distribution 

 

Figure 4. Typical jet X – straightness – normal distribution 

 

Figure 5. Worst  jet  X – straightness – Weibull distribution 

 

Figure 6. Y-bow distribution 

Monte-Carlo analysis 
Using a statistical method for evaluating the capability of the 

Sapphire will take advantage of the fact that no single printhead is 
likely to exhibit characteristics at the limits of all specifications.  
Many of the distributions are normal, and centered at zero, such as 
X straightness error.  The variability in X, the standard deviation of 
jet straightness within an individual head, is Weibull, and as a 
result, most printheads have a standard deviation of straightness 
toward the lower end of the specification. 

Tolerance Analysis at 1 mm Printhead 
Standoff 

The distribution for pixel coverage is shown below where the 
standoff is set to 1 mm.  Pixel coverage is calculated as a measure 
of spot location relative to the target pixel corner, and is 
quantifiable. To calculate pixel coverage, the distance from the 
center of the ink spot to each corner is calculated.  These four 
values are subtracted from the spot radius. If the number is 

NIP25 and Digital Fabrication 2009     Technical Program and Proceedings 717



 

 

negative, the corner of the pixel is not covered.  The smallest or 
most negative value is selected from the four, and plotted.  All 
pixels were covered at 1.0 mm standoff. 

 

Figure 7. Pixel coverage at 1.0 mm standoff 

Repeat of Tolerance Analysis with a 3 mm 
Standoff 

The analysis of the printhead capability is repeated, but with a 
3 mm standoff. As the height the printhead increases, straightness 
errors and velocity errors become more important. The impact of 
many mechanical tolerances tends to remain constant.  The X 
position error distribution, figure 8, is the same in both the 1.0 m 
and 3.0 mm standoff cases. The Y position error, figure 9, has 
increased but the errors are still smaller than those calculated with 
the RMS analysis at a 1.0 mm standoff.  Figure 10 shows the 
distribution of pixel coverage at the new standoff.  Approximately 
66% of all pixels are completely covered.  In 94% percent of cases, 
at least 21 µm of the pixel is covered.  An error of 42 µm results in 
a half covered pixel.  If the system design is using a stochastic 
imaging strategy to minimize ink spot location error, then the 
pixels will likely be covered by neighboring drops from different 
nozzles limiting the amount of undesired white space. 

Effects on Cost 
Different printer manufacturers use different techniques for 

managing cost and the allocation of tolerances.  Given the 
capability of the Sapphire printhead, more tolerance can be 
allocated to the printer than is indicated by the product 
specification. 

 

 

Figure 8. X – Ink drop position error distribution at 3 mm standoff  

 

Figure 9. Y-ink drop position error distribution at 3 mm standoff 

 

Figure 10. Pixel coverage at 3.0 mm standoff. 
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