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Abstract 
By employing Reversible Addition-Fragmentation chain 

Transfer (RAFT)-controlled polymerization, amphipathic random 
copolymers were prepared. The hydrophobic monomer used was 
styrene (St), and hydrophilic one maleic anhydride (MA). The 
resulting copolymers were characterized by Fourier transform 
infrared spectroscopy (FT-IR). Molecular weight and distributions 
were determined using gel permeation chromatography (GPC). 
Macro-RAFT copolymers had the clear advantage of carrying 
living ends, which allow further chain extension via the addition of 
desired monomers at controlled rates. 

With hydrophobic and hydrophilic units, the macro-RAFT 
copolymers have the potential ability to disperse pigment. Organic 
phthalocyanine blue pigment (P.B.15:3) was dispersed with the 
macro-RAFT copolymers by vigorously stirring and ultrasonic 
processing. The properties (particle size, polydispersity index) of 
pigment dispersions were measured. It was shown that the particle 
size and distribution (PDI) has relationship with ultrasonication 
time and the amounts of macro-RAFT copolymers. The results 
showed that the particle size and PDI of pigment dispersions 
dispersed with macro-RAFT copolymer were smaller than that of 
dispersed with sodium dodecyl sulfate (SDS). 

Introduction  
Textile inkjet printing has demonstrated super properties over 

the traditional printing methods because of its higher pattern 
resolution, little pollution, and rapid response to the frequent shift 
of cloth fashion. Pigmented water-based ink has much more 
superiority than dyed ink due to higher light and wash fastness, 
suitable for all kinds of fibers and fabrics, shorter printing 
procedure[1]. However, most of organic pigments with low polarity 
always tend to be aggregation or coagulation and were hard to be 
wetted and dispersed in aqueous media. The dispersant plays an 
important role in preparing pigment dispersion for inkjet inks.  

Polymeric dispersants have proven to have good properties in 
stabilizing pigments in aqueous media. These polymers have 
hydrophobic chains, which would attach to organic pigment 
surface by Van Der Waals force, and hydrophilic chains, which 
would build a voluminous shell around particles and intensify the 
charges on the surface [2]. Recently, many works on the polymeric 
dispersants have been done, for examples diblock polymers[3] and 
graft polymers[4]. In our group, copolymers such as poly(Styrene- 
Maleic Anhydride), poly(Maleic anhydride-Methyl methacrylate) 
were synthesized as polymeric dispersants for organic pigment 
dispersion[5-7]. It was shown that hydrolyzate of PSMA can be used 
as effective polymeric dispersant for pigment dispersion. The 
pigment dispersion had small particle size and good stability, and 
suitable for preparing pigmented water-based inkjet inks. 

As one of the controlled/living radical polymerizations 
(CLRP), reversible addition-fragmentation chain transfer (RAFT) 
polymerization has prominent advantages that include the good 
compatibility with a wide range of monomers and facile 
experimental conditions that are similar to conventional radical 
polymerization[8]. By employing RAFT-controlled polymerization, 
random copolymers can be readily prepared. Moreover, the macro-
RAFT copolymers thus synthesized have the advantage of carrying 
living ends, which allow further chain extension via addition of 
desired monomers at controlled rate[9]. 

In present work, macro-RAFT copolymers of styrene and 
maleic anhydride were prepared by employing reversible addition-
fragmentation chain transfer controlled polymerization. The 
copolymers were characterized by FT-IR and GPC analysis. The 
application of macro-RAFT copolymers for pigment dispersion 
preparation was evaluated. 

Experimental 

Reagents 
Water was distilled and deionized before use. The organic 

phthalocyanine blue pigment (P.B.15:3, Figure 1), a gift from 
Changzhou North American Chemical Group, was used as 
supplied. Carbon disulfide, 1-dodecanethiol, tetrabutyl ammonium 
bromide, hexane, acetone, 2-bromopropanoic acid, from 
Sinopharm Chemical Reagent Co., LtdS were used as received. 
The monomers styrene and maleic anhydride (Sinopharm 
Chemical Reagent Co., LtdS) were distilled under vacuum and 
kept refrigerated until use. The initiator 2, 2’-azobisisobutylo 
nitrile (AIBN) was purified by recrystallization from ethanol. 

 

 
 
 
 
 

Figure 1. Structure of organic phthalocyanine blue pigment. 

Synthesis of RFAT agent 
The RAFT agent 2-{[(dodecylsulfanyl)carbonothioyl]sulfanyl} 

propanoic acid (Figure 3) was synthesized as follows[10]. A 40% 
NaOH solution (4.00 g, containing 1.60 g, 40 mmol of NaOH) was 
added to a stirred mixture of 1-dodecanethiol (8.08 g, 40 mmol) 
and water (60 mL). Then acetone (20 mL) and a tetrabutyl 
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ammonium bromide solution (6.4g, containing 1.28 g, 4 mmol of 
tetrabutyl ammonium bromide) was added, and the resulting clear 
solution was stirred for 30 min, then cooled to near room 
temperature and treated with carbon disulfide (3.42 g, 45 mmol) to 
give a clear orange solution. This was stirred for another 30 min, 
then cooled in an ice bath to an internal temperature of <10°C. 2-
bromopropanoic acid (6.273 g, 41 mmol) was then added at a rate 
that the temperature did not exceed 30°C followed by 40% NaOH 
(4.1g, 410 mmol), also kept the temperature did not exceed 30°C. 
When the exotherm had stopped, the ice bath was removed and 60 
mL water was added. The orange solution was stirred at ambient 
temperature for 24h, then diluted with water (20 mL) and stirred 
and cooled in an ice bath while HCl was added at a rate which kept 
the temperature <10°C. A yellow oil separated, and stirring of the 
mixture was continued until the oil solidified. The solid was 
collected by suction filtration, washed with cold water, and dried 
under reduced pressure. The crude sample was recrystallized from 
hexane with gentle stirring to give bright yellow microcrystals. IR 
(KBr): 2954.51, 2954.51, 2919.82, 2851.84, 1707.31, 1450.20, 
1421.40, 1298.36, 1209.87, 1097.55, 1043.42, 980.40, 913.68, 
825.59, 722.54, 649.94 cm-1 (Figure 2). 

 
 
 
 
 
 
 
 
 

 

Figure 2. FT-IR spectrum of RAFT agent 

 

Figure 3. Structure of RAFT agent 2-{[(dodecylsulfanyl)carbonothioyl]sulfanyl} 
propanoic acid 

Formation of macro-RAFT copolymers 
The RAFT agents were reacted with styrene and maleic 

anhydride in the presence of initiator to give a macro-RAFT 
copolymer. A solution of RAFT agent (0.75g) and 2, 2’-
azobisisobutyronitrile (0.15g), styrene (9.37g), and maleic 
anhydride (5.88g) was prepared in dioxane (50g) in a 250 mL 
round-bottomed flask. This was sparged with nitrogen for 10 min 
and stirred slightly. Then the flask was heated to 70oC and 
maintained for 5h under constant stirring. While the reaction 
solution was transferred to water, synthesized polymers were 
precipitated.  

Pigment dispersion 
Pigment dispersion was normally carried out by mechanical 

milling or ultrasonication. The aim of these process was to apply 

external force to break up pigment aggregates to small particles. 
During the dispersion process, dispersants adsorbed onto the 
surface of pigment particles to prevent particles agglomerating. 

A solution containing macro-RAFT copolymer, water and 
sodium hydroxide was prepared in 50 mL beaker. To this  solution 
P.B.15:3 was added, mixed and  then dispersed with a JY98-3D 
Ultrasonic Pulverizer (Scientz company) at 800 W (1s pulse on/4s 
pulse off ) for 10 min. During the ultrasonication process, the 
dispersion was cooled in a water bath. 

Measurements 

FT-IR spectra 
Fourier transform infrared (FT-IR) spectra were recorded on a 

NICOLET NEXUS 470 spectrometer (Thermo Fisher Scientific 
Inc., America) with a DTGS detector. The dried samples mixed 
with KBr were compressed into a disc for FT-IR scanning. The 
measurement was performed with 32 runs scanning and the 
resolution of 2 cm-1.  

GPC analysis  
Molecular weight and distributions were determined using gel 

permeation chromatography (GPC). Analyses were carried out 
using a Waters 1515 HPLC system fitted with a series of HP PLgel 
MIXED-C columns (3×10-6L and 5×10-6L). Molecular weight was 
determined from Waters 2414 refractive index data analyzed with 
Waters Breeze GPC software, with all molecular weights being 
relative to polystyrene standards. 

Particle size and its distribution 
The particle size was measured at 25oC using a Malvern 

Instrument NANO-ZS 90 at a fixed scattering angle of 90o. The 
dispersion was diluted with distilled water before measuring. 
Dynamic light scattering (DLS) measurements give a Z-average 
size, which is intensity mean of the particle diameter, and the 
polydispersity index (PDI), which provides information about the 
width of the particle size distribution.  

Results and Discussion 

Preparation of macro-RAFT copolymers 
A trithiocarbonate RAFT agent with a dodecylsulfanyl Z 

group (Figure 3) was used to prepare macro-RAFT copolymers.  
It was shown from figure 4 that styrene and maleic anhydride 

copolymerized by RAFT controlled polymerization. The wave 
numbers 1454cm-1, 1495cm-1, 1602cm-1 were in-plane stretching 
vibration of –C=C– in benzene; There were symmetric and 
asymmetric stretching vibration of C=O in wave numbers of 1778 
and 1856cm-1, and the absorption intensity of 1856cm-1 was 
weaker than that of 1778cm-1, which was the remarkable 
characteristic of cyclic anhydrides (5 membered rings). It can be 
seen from these absorption bands that there were styrene and 
maleic anhydride units in synthesized copolymers. 

It was proven from the FT-IR spectrum that styrene and 
maleic anhydride copolymerized according to RAFT controlled/ 
living radical polymerization using the trithiocarbonate RAFT 
agent. In FT-IR spectra, there were some differences of absorption 
intensity in some bands between macro-RAFT copolymer and 
PSMA (polystyrene-co-maleic anhydride). The relative absorption 
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intensities of macro-RAFT copolymer in wave numbers 2922cm-1 
and 1778 cm-1 were much stronger than that of PSMA. The wave 
numbers 2922cm-1 and 1778 cm-1 were stretching vibrations of C-
H in –CH2– and C-O in -C=O, respectively. So, it was 
undoubtedly that the RAFT agent with dodecyl and carboxyl 
groups copolymerized with styrene and maleic anhydride 
according to RAFT controlled/living radical polymerization 
process. 

Figure 4. FT-IR spectrum of polymers (A: macro-RAFT copolymer, B: PSMA) 

Table 1. Molecular weight and distributions of copolymers 
RAFT (%)a Mn Mw Polydispersity 

0 152410 233339 1.50 
1.0 75551 107029 1.42 
2.5 60561 79693 1.32 
5.0 42518 55134 1.30 
7.5 33296 43010 1.29 
10 18936 21806 1.15 

a The amounts of RAFT agent were weight fraction relative to 
monomers. 

The average molecular weight and its distributions 
(polydispersity) of copolymers were shown in table1. The average 
molecular weight and its distributions of macro-RAFT copolymers 
were smaller than that of PSMA. Furthermore, they decreased with 
the amount of RAFT agent increasing. The smaller distributions of 
molecular weight than that of traditional radical polymerizations 
showed the character of RAFT polymerizations.  

From above analyses of FT-IR and molecular weight of 
copolymers, it can be concluded that in present of RAFT agent, 
styrene and maleic anhydride copolymerized according to 
reversible addition-fragmentation chain transfer controlled/living 
radical polymerization. 

Pigment dispersion 

Ultrasonication time 
Pigment dispersed with hydrolyzed macro-RAFT copolymers 

was evaluated. There were styrene and maleic anhydride units in 
macro-RAFT copolymers. The styrene hydrophobic region 
especially the benzene can interact with organic pigment. The 
hydrophilic maleic acid or its salt hydrolyzed from maleic 
anhydride could provide the dispersion stability depending on 
steric and electrostatic repulsions. 

The pigment dispersions were produced by ultrasonication of 
mixture of pigment, hydrolyzed macro-RAFT copolymers and 
water. Ultrasonic waves of high intensity ultrasound generate 
cavitations in liquids. The cavitations can be used in liquids for 
many processes, e.g. for mixing and blending, deagglomeration, 
milling and cell disintegration. In ultrasonication process, pigment 
aggregates were broken up to small particles because of ultrasonic 
cavitations. With time prolong, the particle size of pigment was 
smaller, and the particle size distribution (polydispersity index, 
PDI) decreased. With about 5min ultrasonication, the particle size 
almost did not change, and PDI increased slightly. Except of 
deagglomerztion, the effect of ultrasonic cavitation was to 
generate heat. With time prolong, the heat generation made the 
temperature of dispersions rising. In higher temperature, the 
smaller particles may interaction with each other, which made the 
particle size and PDI increased. Therefore, in the ultrasonic 
dispersing process, the temperature must be kept lower and too 
long process was not expected. 

Table 2. Effect of ultrosonication time on pigment dispersion 
Time (min) Particle size (nm) PDI 

1 190.7 0.375 
2 170.4 0.214 
3 166.8 0.230 
4 169.1 0.207 
5 165.9 0.217 
7 164.8 0.225 
9 162.4 0.211 

a St/MA=3:2(mol/mol), RAFT agent 7.5% (to monomer), 
AIBN 10% (to monomer), copolymer 10% (to pigment). 

Amount of macro-RAFT copolymers 
It revealed from table 3 that particle size of pigment 

dispersions reduced first and then increased, with increasing the 
amount of macro-RAFT copolymers. The variation of particle size 
distribution (PDI) was similar to that of particle size. The smaller 
particle size of pigment, the surface areas were larger, and also 
higher surface energy. The smaller particles were tending to 
interact to each other to decrease surface energy. Therefore, there 
were much more amounts of copolymers required to adsorb on the 
surface of particles preventing aggregations among particles.  

However, too many amounts of copolymers were not 
desirable. When the amount of copolymers was too high, a part of 
copolymers would disperse in the water which could increase the 
viscosity of dispersion, thus led to lower dispersing efficiency. 
Moreover, copolymers dispersed in water might bridge two or 
more particles to large aggregates.  

Table 3. Effect of amount of macro-RAFT copolymers on 
pigment dispersions 

Copylymers (w %)a Particle size(nm) PDI 
3 175.2 0.234 
5 156.8 0.228 
7 154.8 0.219 
10 172.6 0.313 
20 169.7 0.292 

a The amounts of copolymers were weight fraction relative to 
pigment. Copolymers: St/MA=3:2(mol/mol), RAFT agent 
2.5% (to monomer), AIBN 10% (to monomer). 
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Compared with traditional dispersant 
In preparation of pigment dispersion, traditional dispersants 

were small molecule surfactants. But, the disperse efficiency of 
these surfactants was not effective compared with polymeric 
dispersants. Table 4 showed the particle size and PDI of pigment 
dispersions dispersed with synthesized copolymer and surfactant 
(SDS, sodium dodecyl sulfate). The particle size and PDI of 
pigment dispersion dispersed with macro-RAFT copolymer were 
smaller than that of dispersed with SDS. There were a lot of 
benzene rings in the copolymers, which could interact with 
hydrophobic surface of pigment particles. And, there were 
repulsions among the carboxyl and carboxylic ions in the chains, 
which made the small pigment particles stable. However, for the 
surfactant SDS there were less hydrophobic adsorption and ionic 
repulsion. 

Table 4. Pigment dispersions dispersed with different 
dispersant 

Dispersants Particle size(nm) PDI 
copolymera 170.3 0.251 

SDS 228.7 0.381 
a St/MA=3:2(mol/mol), AIBN 1%(w/w, to monomer), RAFT 
7.5%(w/w, to monomer) 

Conclusions  
Macro-RAFT copolymers were synthesized by reversible 

addition-fragmentation chain transfer (RAFT) controlled/living 
radical polymerization. The copolymers were characterized by FT-
IR spectra and molecular weight analyses.  

The macro-RAFT copolymers, with hydrophobic and 
hydrophilic units, have the potential ability to disperse pigment. 
Organic phthalocyanine blue pigment (P.B.15:3) was dispersed 
with them by vigorously stirring and ultrasonic processing. The 
properties of pigment dispersions (particle size, polydispersity 
index) were measured. It was shown that the particle size and 
distribution (PDI) has relationship with ultrasonication time and 
the amounts of macro-RAFT copolymers. With prolong of 
ultrasonication time the particle size and PDI reduced first and 
then increased slightly. When the amounts of copolymers were too 
low or high, the particle size and PDI were larger. The particle size 

and PDI of pigment dispersion dispersed with macro-RAFT 
copolymer were smaller than that of dispersed with sodium 
dodecyl sulfate (SDS). 
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