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Abstract 
In a tandem printer, local dot positioning errors at a first 

transfer, which likely occur in thick paper printing, are 
unacceptable problems. 

In this study, the mechanism of generating local dot 
positioning errors is investigated by FEM analysis. At first, 
vibration characteristics of a transfer belt drive system are 
investigated experimentally. And then, motion and deformation of 
a belt, a paper and rollers with the vibration characteristics are 
analyzed by FEM. Finally, calculated belt velocity fluctuation is 
validated by comparison with experiments. 

As a result, it is clarified that the local dot positioning errors 
by belt velocity fluctuation at the first transfer are generated by 
belt tension and torque fluctuations on the drive shaft caused by 
impacts when leading edge of the thick paper is fed into a second 
transfer nip region. It has been known that the impacts generate a 
torque fluctuation on the drive shaft in a belt drive system as well 
as a steel rolling mill system. However, it is found in the result that 
they also generate a belt tension fluctuation in a pre-nip region 
caused by a contact force between a belt and a paper. 

Present calculations can also provide image quality 
deterioration levels affected by jitter since the practical velocity 
fluctuations are accurately simulated.  

 

Introduction  
In a tandem printer, local dot positioning errors at a first 

transfer, which likely occur in thick paper printing, are 
unacceptable problems. As shown in Figure 1, they are caused by 
a transfer belt velocity fluctuation when leading edge of the thick 
paper is fed into a second transfer nip region. Therefore, it is 
necessary that the belt velocity fluctuation is calculated and 
mechanism of generating local dot positioning errors is 
investigated. 

In recent years, slippage of transferred images caused by a 
velocity difference between an OPC drum and a paper has been 
studied [1]. Jitter caused by the vibration of a print-head carriage 
system has been studied [2]. Torque fluctuation on the drive shaft 
for a rolling mill has been calculated [3]. Drive torque when a 
thick paper goes into a roll nip has been calculated [4]. Mechanism 
of pinching belt conveyor [5] has been analyzed by FEM. 
However, FEM analysis with the vibration characteristics of a 
transfer belt drive system has not been studied yet. 

In this study, vibration characteristics of a belt drive system 
are investigated experimentally. And then, motion and deformation 
of a belt, a paper and rollers with the vibration characteristics are 
analyzed by FEM. Finally, calculated belt velocity fluctuation is 
validated by comparison with experiments and mechanism of 
generating local dot positioning errors is investigated. 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of mechanism of generating local jitter 
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Vibration Characteristics of a Belt Drive 
System 

Experimental Apparatus 
As shown in Figure 1, a belt drive system consists of a 

transfer belt unit and a drive unit. A transfer belt is stretched over 
four rollers and pressed by a second transfer roller opposite to a 
drive roller. The transfer belt unit is jointed to the drive unit that 
consists of a DC motor and a reduction gear. A paper is fed into a 
second transfer nip by feed rollers. A rotary encoder is mounted on 
each shaft of a drive roller and a driven roller. Angular velocity 
and current of the motor are also measured in the apparatus. In this 
study, angular velocity of the driven roller is regarded as the belt 
velocity at a first transfer. 

Frequency Response 
Frequency response of a belt drive system was obtained using 

a swept-sine analysis with a dynamic signal analyzer. The system 
input is the voltage supplied to a PWM amplifier for applications 
using DC motor in current mode. Figure 2 (a) shows the frequency 
response from angular velocity of a drive roller to that of a driven 
roller. The phase is gradually lagging, however the magnitude is 
constant at nearly 0db from 10Hz to 150Hz. Therefore a transfer 
belt unit can be modeled as a 1-inertia system. Figure 2 (b) shows 
the frequency response from motor current to angular velocity of a 
drive roller. It indicates a resonant frequency at nearly 105Hz. 
Therefore a belt drive system can be modeled as a 2-inertia system 
that consists of a drive unit and a transfer belt unit. 

Parameter Identification 
Figure 3 shows block diagram of a belt drive system. It is 

necessary to identify the following unknown parameters in this 
system. 
・ Damping coefficient DM of a drive unit 
・ Static load SM of a drive unit 
・ Damping coefficient DR of a transfer belt unit 
・ Static load SR of a transfer belt unit 
・ Torsion stiffness kS 
・ Torsion damping coefficient DS 
 

Damping coefficient DM of the drive unit is obtained using a 
time constant Ta that is calculated from the step response of the 
drive unit. The input is motor current and the output is angular 
velocity of the motor. The transfer function between the input and 
output is given by  

 
(1) 

 
The step response between the input and output is given by 

 
(2) 

Therefore the time constant Ta is calculated from the experimental 
result using                         and 

Damping coefficient DR of the transfer belt unit is obtained 
using a time constant Tb that is calculated from the step response 
of the belt drive system. The input is motor current, and the output 
is angular velocity of the driven roller. Modeled as a 1-inertia 

system where torsion stiffness is infinite, the transfer function 
between the input and output is given by 

 
 
 
 

(3) 
Therefore DR can be obtained as well as DM. 

SM and SR are obtained using torque equilibrium equations as 
follows: 

 
 

(4) 
Torsion stiffness kS is obtained using characteristic frequency 

of the 2-inertia system on the drive shaft as follows: 
 

(5) 
 
Torsion damping coefficient DS is obtained fitting calculated 

results to experiments of the frequency response at a resonant 
frequency. 

Figure 4 shows calculated frequency response using the 
empirical model, which is compared to the experimental 
measurement. Both responses agree well, except the phase after a 
resonant frequency. The most probable reason of this result is due 
to damping non-linearity, which is not included in the 2-inertia 
system model. Thus, the vibration characteristics of a belt drive 
system are identified. 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 2. Frequency response of a belt drive system 

 

 

 

 

 

Figure 3. Block diagram of a belt drive system 
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Figure 4 Comparison between calculated and experimental frequency 
response of a belt drive system 

 

 

 

 

Figure 5. Simulation model 

Finite Element Method 

Simulation Model 
Motion and deformation of a belt, a paper and rollers with the 

vibration characteristics are analyzed by FEM software Marc. 
Figure 5 shows a simulation model of the experimental apparatus. 
A belt, a paper, a second transfer roller and a feed roller are 
modeled as deformable body and meshed to quad elements of 
plain strain solid. The numbers of elements of each body are (7200, 
2), (659, 3)，(480, 12), and (240, 5), respectively. The others are 
modeled as rigid body. A drive roller is also modeled as rigid body 
because a rubber layer is enough thin to deform little. Main 
parameters of the simulation model are shown in Table 1.  

 The identified vibration characteristics are reflected in the 
simulation model. DR and SR are applied to damping coefficient 
and initial load of a torsion spring between the drive roller and an 
XY origin. DS and kS are applied to damping coefficient and 
stiffness of a torsion spring between the drive roller and the motor. 
DM and SM are not reflected because constant rotational 
displacement is given to the motor. The vibration characteristics in 
the feed roller system are also reflected, which are identified using 
a test bench. 

 The belt velocity fluctuation when leading edge of the thick 
paper is fed into a second transfer nip region is calculated using 
dynamic transient analysis.  

Table 1. Main parameters of simulation model 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Comparison between calculated and experimental angular velocities 

of the driven roller 

Experimental Validation of Simulation Model 
The calculated belt velocity fluctuation is validated by 

comparison with experiments. Figure 6 (a) and (b) show calculated 
and experimental angular velocities of the driven roller at feed 
velocity 77mm/sec and 205mm/sec. Both results agree well at each 
feed velocity, which supports the validity of the simulation model. 

Mechanism of Generating Belt Velocity 
Fluctuation 

Mechanism of generating belt velocity fluctuation is clarified 
with the simulation models for motion and deformation. Figure 7 
shows snapshots of motion and deformation. 

As shown in Figure 7 (a), angular velocity of the driven roller 
is increasing when leading edge of the thick paper is fed into a pre-
nip region. Stretched belt between the drive and driven rollers is 
pushed inward by leading edge of the thick paper. Therefore the 
driven roller is subjected to accelerating torque and belt velocity is 
increasing. As shown in Figure 6 (a), angular velocity of the 
driven roller is increasing little at feed velocity 77mm/sec, which 
shows that as feed velocity is faster, angular velocity of the driven 
roller is more increasing. 

As shown in Figure 7 (b), angular velocity of the driven roller 
is decreasing when leading edge of the thick paper is fed into a 
primary-nip region. The paper cannot be fed forward until a 
second transfer roller is pushed down to thickness of paper. In fact, 
additional torque of the drive roller is needed to push down the 
second transfer roller through the paper as well as a rolling mill 
system. Therefore the drive and driven rollers are subjected to 
reducing torque and belt velocity is decreasing. 
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Figure 7. Snapshots of motion and deformation 

 

 

 

 
 

Figure 8. Comparison between calculated belt velocity and luminosity 
variation 

As shown in Figure 7 (c), angular velocity of the driven roller 
is decreasing when the second transfer roller is pushed down to 
thickness of paper. Stretched belt between the drive and driven 
rollers pushed inward by the thick paper returns as its reaction. In 
fact, the opposite phenomenon from the snapshot shown in Figure 
7 (a) occurs. Therefore the driven roller is subjected to reducing 
torque and belt velocity is decreasing. 

Thus, the belt velocity fluctuation is generated by not only 
torque fluctuation on the drive shaft but also belt tension 
fluctuation in a pre-nip region when leading edge of the thick 
paper is fed into a second transfer nip region. 

Comparison between Calculated Results and 
Printed Image 

Figure 8 shows comparison between calculated belt velocity 
and luminosity variation for black halftones in thick paper printing. 
As shown in Figure 8, both results agree well, which enables the 
calculations to provide image quality deterioration levels affected 
by jitter. 

Conclusion 
In this study, vibration characteristics of a belt drive system 

are investigated experimentally. And then, belt velocity fluctuation 
when leading edge of the thick paper is fed into a second transfer 
nip region is calculated by FEM with vibration characteristics. 
Finally, calculated belt velocity fluctuation is validated by 
comparison with experiments. As a result, it is clarified that the 
belt velocity fluctuation is generated by not only torque fluctuation 
on the drive shaft but also belt tension fluctuation in a pre-nip 
region when leading edge of the thick paper is fed into a second 
transfer nip region. Present calculations can also provide image 
quality deterioration levels affected by jitter since the practical 
velocity fluctuations are accurately simulated. 
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